THE LIBRARY STATE OF CALIFORNIA The Resources Agency partment of Water Resources BULLETIN No. 130-68 HYDROLOGIC DATA: 1968 VOLUME III: CENTRAL COASTAL AREA AUGUST 1970 OCT 2 1970 NORMAN B. LIVERMORE, JR. Secretary for Resources The Resources Agency RONALD REAGAN Governor State of California WILLIAM R. GIANELLI Director Department of Water Resources # STATE OF CALIFORNIA The Resources Agency # Department of Water Resources BULLETIN No. 130-68 # HYDROLOGIC DATA: 1968 # VOLUME III: CENTRAL COASTAL AREA Copies of this bulletin at \$3.50 each may be ordered from: Office of Procurement DOCUMENTS SECTION P.O. Box 20191 Sacramento, California 95820 Make checks payable to STATE OF CALIFORNIA. California residents add 5 percent sales tax. AUGUST 1970 NORMAN B. LIVERMORE, JR. Secretary for Resources The Resources Agency RONALD REAGAN Governor State of California WILLIAM R. GIANELLI Director Department of Water Resources #### FOREWORD The data collection programs of the Department of Water Resources have been designed to supplement the activities of other agencies to satisfy specific needs of the State. Bulletin No. 130-68 presents useful, comprehensive, accurate, and timely hydrologic data which are prerequisites for effective planning, design, construction, and operation of water facilities. The Bulletin No. 130 series is published annually in five volumes. Each volume presents hydrologic data for one of five reporting areas of the State. These areas are delineated on the map to the left. William R. Gianelli, Director Department of Water Resources The Resources Agency State of California June 15, 1970 #### METRIC CONVERSION TABLE | ENGLISH UNIT | EQUIVALENT METRIC UNIT | |---------------------------------|-------------------------------------| | l Inch (in) | 2.54 Centimeters | | 1 Foot (ft) | 0.3048 Meters | | l Mile (mi) | 1.609 Kilometers | | 1 Acre | 0.405 Hectares | | l Square mile (sq.mi.) | 2.590 Square kilometers | | 1 U. S. gallon (gal) | 3.785 Liters | | 1 Acre-foot (ac.ft.) | 1,233.5 Cubic meters | | 1 U. S. gallon per minute (gpm) | 0.0631 Liters per second | | 1 Cubic foot per second (cfs) | 1.7 Cubic meters per minute | | l Part per million (ppm) | l Milligram per liter (mg/l) | | l Part per billion (ppb) | l Microgram per liter (ug/l) | | l Part per trillion (ppt) | 1 Nanogram per liter (ng/l) | | l Equivalent per million (epm) | l Milliequivalent per liter (me/l) | | Degrees Fahrenheit (°F) | 5/9 (°F-32) Degrees Centigrade (°C) | #### TABLE OF CONTENTS | | Page | |---|------| | AREAL COVERAGE OF VOLUMES | ii | | FOREWORD | iii | | METRIC CONVERSION TABLE | iv | | ACKNOWLEDGMENTS | viii | | ORGANIZATION | ix | | ABSTRACT | x | | APPENDIXES | | | | | | Appendix A: CLIMATOLOGICAL DATA | | | Introduction | 3 | | Figure FIGURES Number | | | A-1 Climatological Observation Stations 1967-68 | 4 | | Table TABLES Number | | | A-1 Index of Climatological Stations for 1967-68 | 7 | | A-2 Precipitation Data | 12 | | A-3 Temperature Data | 17 | | A-4 Evaporation Data | 25 | | Appendix B: SURFACE WATER MEASUREMENTS | | | | 100 | | Introduction | 29 | | Table TABLES Number | | | | | | B-1 Surface Water Imports to the Central Coastal Area | 30 | | B-2 Daily Mean Gage Height, Rector Reservoir near Yountville | 31 | | B-3 Daily Maximum and Minimum Tides | 32 | | B-4 Corrections and Revisions to Previously Published Reports of Surface Water Data | 34 | #### METRIC CONVERSION TABLE | ENGLISH UNIT | EQUIVALENT METRIC UNIT | |---------------------------------|-------------------------------------| | | | | 1 Inch (in) | 2.54 Centimeters | | 1 Foot (ft) | 0.3048 Meters | | l Mile (mi) | 1.609 Kilometers | | 1 Acre | 0.405 Hectares | | 1 Square mile (sq.mi.) | 2.590 Square kilometers | | 1 U. S. gallon (gal) | 3.785 Liters | | 1 Acre-foot (ac.ft.) | 1,233.5 Cubic meters | | 1 U. S. gallon per minute (gpm) | 0.0631 Liters per second | | 1 Cubic foot per second (cfs) | 1.7 Cubic meters per minute | | 1 Part per million (ppm) | 1 Milligram per liter (mg/l) | | 1 Part per billion (ppb) | 1 Microgram per liter (ug/l) | | l Part per trillion (ppt) | 1 Nanogram per liter (ng/l) | | l Equivalent per million (epm) | l Milliequivalent per liter (me/l) | | Degrees Fahrenheit (°F) | 5/9 (°F-32) Degrees Centigrade (°C) | #### TABLE OF CONTENTS | | | age | |------------------|---|-----| | AREAL COVI | ERAGE OF VOLUMES | ii | | FOREWORD | | iii | | METRIC CO | NVERSION TABLE | iv | | ACKNOWLED | GMENTS | iii | | ORGANIZAT | ION | ix | | ABSTRACT | | x | | APPENDIXES | S | | | | | | | Appendix A | A: CLIMATOLOGICAL DATA | | | Intro | oduction | 3 | | Figure
Number | FIGURES | | | A-1 | Climatological Observation Stations 1967-68 | 4 | | Table
Number | TABLES | | | A-1 | Index of Climatological Stations for 1967-68 | 7 | | A-2 | Precipitation Data | 12 | | A-3 | Temperature Data | 17 | | A-4 | Evaporation Data | 25 | | | | | | Appendix I | B: SURFACE WATER MEASUREMENTS | | | Intro | oduction | 29 | | Table | TABLES | | | Number | | | | B-1 | Surface Water Imports to the Central Coastal Area | 30 | | B-2 | Daily Mean Gage Height, Rector Reservoir near Yountville | 31 | | B-3 | Daily Maximum and Minimum Tides | 32 | | B-4 | Corrections and Revisions to Previously Published Reports of Surface Water Data | 34 | #### TABLE OF CONTENTS (Continued) | | | Page | |------------------|---|------| | Append | ix C: GROUND WATER MEASUREMENTS | | | I | ntroduction | 37 | | Figure
Number | | | | C-1 | Ground Water Basins in the Central Coastal Area | 39 | | C-2 | Average Depth to Water in Wells, Spring 1958 to Spring 1968 | 44 | | Table
Number | TABLES | | | C-1 | Average Change of Ground Water Levels and Summary of Well Measurements Reported | 42 | | C-2 | Ground Water Levels at Wells | 50 | | Append | ix D: SURFACE WATER QUALITY | | | I | ntroduction | 63 | | Figure
Number | | | | D-1 | Surface Water Observation Stations 1967-68 | 64 | | D-2 | Maximum, Minimum and Average Daily Specific Conductance, Alameda Creek near Niles | 70 | | Table
Number | TABLES. | | | D-1 | Sampling Station Data and Index | 68 | | D-2 | Mineral Analyses of Surface Water | 71 | | D - 3 | Miscellaneous Constituents in Surface Water | 83 | | D-4 | Salinity Observations at Bay and Delta Stations | 87 | | D-5 | Nutrients in Surface Water | 90 | | D-6 | Pesticides in Surface Water and Sediment | 95 | | D-7 | Plankton Analysis of Surface Water | 97 | | | | | | Append | ix E: GROUND WATER QUALITY | | | I | introduction | 101 | | I | index to Monitored Areas | 102 | #### TABLE OF CONTENTS (Continued) | | | Page | |--|----|------| | Appendix E: GROUND WATER QUALITY (Continued) | | | | Table TABLES Number | | | | E-1 Mineral Analyses of Ground Water | | 103 | | E-2 Trace Element Analyses of Ground Water | | 121 | | Appendix F: WASTE WATER | | | | Introduction | | 125 | | Definitions | | 129 | | Figure FIGURES Number | | | | F-1 Location of Waste Dischargers | | 138 | | Table TABLES Number | | | | F-1 Summary, Quantity of Waste Water Discharged and Reus | ed | 130 | | F-2 Quantity of Waste Water Discharged and Reused | | 131 | | F-3 Analyses of Waste Water | | 135 | #### ACKNOWLEDGMENTS In the preparation of this report, valuable assistance and contributions were received from many public and private agencies. This cooperation is gratefully acknowledged. Special mention is made of the following agencies: #### Federal U. S. Army Corps of Engineers U. S. Army, Post Engineer, Fort Ord U. S. Bureau of Reclamation U. S. Coast Guard U. S. Geological Survey U. S. Soil Conservation Service U. S. Weather Bureau #### State Department of Public Health Department of Veterans Affairs Division of Highways Division of Forestry University of California, Agricultural Extension Service North Coastal Water Quality Control Board San Francisco Bay Regional Water Quality Control Board Central Coastal Regional Water Quality Control Board State Water Resources Control Board #### Local Alameda County Flood Control and Water Conservation District Alameda County Water District Marin County Mendocino County Monterey County Flood Control and Water Conservation District Napa County San Benito County San Luis Obispo County Flood Control and Water Conservation District Santa Clara County Flood Control and Water District Santa Clara Valley Water Conservation District Santa Cruz County, Department of Public Works Solano Irrigation District Sonoma County Flood Control and Water Conservation District South Santa Clara Valley Water Conservation District # State of California The Resources Agency DEPARTMENT OF WATER RESOURCES RONALD REAGAN, Governor, State of California NORMAN B. LIVERMORE, JR., Secretary for Resources WILLIAM R. GIANELLI, Director, Department of Water Resources JOHN R. TEERINK, Deputy Director This report was prepared in the #### CENTRAL DISTRICT | CENTRAL DISTRICT | |--| | John M. Haley | | Edward J. Labrie | | assisted by | | Grant C. Ardell Water Resources Engineering Associate Jan C. Bush Water Resources Engineering Associate Joseph L. Clausse Water Resources Engineering Associate Emil M. Padjen | | A portion of the data was furnished by the | | SAN JOAQUIN DISTRICT | | Carl L. Stetson | | by | | Cledith L. Chastain | Reviewed and coordinated by Division of Resources Development Program Formulation and Coordination Office Water Resources Evaluation Section #### ABSTRACT Report contains tables showing data on climate, surface water flow, ground water levels, surface and ground water quality, and waste water in the Central
Coastal Area for the 1967-68 water year. Figures show the location of climatological observation stations and ground water basins; the average depth to water in wells; the location of surface water measurement and surface water quality stations; the daily mean specific conductance of Alameda Creek near Niles; the location of waste dischargers; and major drainage and hydrographic unit boundaries. Appendix A CLIMATOLOGICAL DATA #### INTRODUCTION This appendix summarizes monthly precipitation, temperature, wind movement, and evaporation data for the Central Coastal Area from July 1, 1967, to September 30, 1968. Eighteen cooperating agencies and 24 local observers supplied the data. Detailed daily and hourly data not published here are available in the files of the Department of Water Resources. To insure accuracy, stations are inspected regularly to see that the equipment is properly maintained and that the observations generally are taken in accordance with U. S. Weather Bureau standards. Each station in this appendix has been assigned an identification number. The letter and first digit denote the drainage basin as shown below. The remaining digits denote the sequence of the station in alphabetical order. #### Central Coastal Area - DO Santa Cruz Coast - Dl Pajaro-San Benito Rivers - D2 Lower Salinas River - D3 Upper Salinas River - D4 Monterey Coast #### San Francisco Bay Area - EO San Francisco Bay Area - El Coast-Marin - E2 Marin-Sonoma - E3 Napa-Solano - E4 East Bay - E5 Alameda Creek - E6 Santa Clara Valley - E7 Bayside-San Mateo - E8 Coast-San Mateo #### North Coastal Area - F8 Mendocino Coast - F9 Russian River #### TABLE A-1 #### INDEX OF CLIMATOLOGICAL STATIONS FOR 1967-68 An explanation of the column headings and the code symbols used in connection with the climatological station listing follows: 40-Acre Tract - This denotes the location of the station within the section in which it is located. The letter code is derived from the diagram to the right. | D | C | В | A | |---|---|---|---| | E | F | G | H | | M | L | K | J | | N | P | Q | R | Base and Meridian - The code for this column is as follows: M - Mount Diablo Base and Meridian Cooperator Number - This number is assigned from the following list: - 000 Private Cooperator - 403 Sonoma County Flood Control and Water Conservation District - 407 San Benito County - 411 Marin County - 413 Marin Municipal Water District - 414 Santa Clara Valley Water Conservation District - 418 Vallejo Water Department - 426 Santa Clara County Flood Control and Water District - 801 Pomology Department, University of California, Davis - 804 California Department of Beaches and Parks - 806 California Department of Water Resources - 808 California Division of Forestry - 809 California Division of Highways - 900 U. S. Weather Bureau - 901 U. S. Corps of Engineers, San Francisco District - 907 State Climatologist (unpublished U. S. Weather Bureau) - 909 U. S. Soil Conservation Service by the agency responsible for or handling the records of the station. The U. S. Weather Bureau number is only shown in this column when it differs from the alpha order number. County - This is a standard code for California counties and adjacent areas as shown below: | Alameda | 60 | San Francisco 80 | |--------------|----|--------------------| | Contra Costa | 07 | San Luis Obispo 40 | | Marin | 21 | San Mateo 41 | | Mendocino | 23 | Santa Clara 43 | | Monterey | 27 | Santa Cruz 44 | | Napa | 28 | Solano 48 | | San Benito | 35 | Sonoma 49 | #### TABLE A-I (Cont.) #### INDEX OF CLIMATOLOGICAL STATIONS FOR 1967-68 | | Station | Elevation
(In Feet) | Section | Township | Ronge | Acre Troct | & Meridian | Lotifude | Longitude | Cooperator * | Coopero tor's
Index
Number | Record | Record | Missing . | nty Code | |---------------------|--------------------------------------|------------------------|------------------|--------------|--------------|------------|------------|----------------------|------------------------|--------------|----------------------------------|--------------|--------|-----------|----------| | Number | Name | Ele | Se | Ą | E | 40-4 | Bose 6 | וו ו ס | 0 - 11 | Coo | Coop | æ u | E | Yeors | County | | 6 0053 | ALAMITOS PERCOLATION POND | 185 | | | | | М | 37 15 18 | 121 52 18 | 414 | | 1959 | | | 43 | | 24 0064
26 0125 | ALAMO 1 N
ALMADEN RESERVOIR | 410
640 | SEC 12
SEC 11 | T01S
T09S | RO2W
RO1E | E | M
M | 37 52 00
37 10 00 | 122 02 00
121 50 00 | 900
414 | | 1957
1936 | | | 07
43 | | 9 0135 | ALPINE DAM | 680 | SEC II | T01N | RO7W | E | M | 37 56 30 | 122 38 18 | 413 | | 1925 | | | 21 | | 23 0212 | ANGWIN P U C | 1815 | SEC 05 | T08N | R05W | K | M | 38 34 17 | 122 26 05 | 900 | | 1939 | | | 28 | | 02 0322 | ARROYO SECO | 800 | SEC 36 | T19S | RO4E | | M | 36 14 00 | 121 29 00 | 900 | | 1931 | | | 27 | | 03 0360-01 | ATASCADERO MAINT STATION | 940 | SEC 26 | T28S | R12E | R | M | 35 27 30
38 25 36 | 120 38 24
122 14 53 | 809
900 | L145 | 1948
1940 | | | 40
28 | | 3 0372
0 0677 | ATLAS ROAD
BEN LOMOND #3 | 1660
720 | SEC 25
SEC 10 | T07N
T10S | RO4W
RO1W | G | M | 38 25 36
37 05 00 | 122 04 00 | 900 | | 1940 | | | 44 | | 64 0693 | BERKELEY | 299 | | TOIS | RO3W | | M | 37 52 00 | 122 15 00 | 900 | | 1887 | | | 60 | | 4 0790 | BIG SUR STATE PARK | 235 | SEC 30 | T19S | R02E | | М | 36 15 00 | 121 47 00 | 900 | | 1914 | | | 27 | | 6 0850 | BLACK MOUNTAIN 2 SW | 2331 | SEC 36 | TO7S | RO3W | | M | 37 18 00 | 122 10 00 | 900 | | 1943 | | | 43 | | 79 0876
79 0969 | BLAKES LANDING
BON TEMPE DAM | 40
723 | SEC 13
SEC 11 | TO4N
TO1N | RO1W
RO7W | | M
M | 38 11 42
37 57 24 | 122 55 00
122 36 36 | 000
413 | | 1956
1958 | | | 21 | | 8 0973 | BOONVILLE H M S | 342 | SEC 02 | T13N | R14W | F | M | 39 00 54 | 123 22 20 | 900 | PN0971 | 1936 | | | 23 | | 00 1005 | BOULDER CREEK LOCATELLI RCH | 2175 | SEC 16 | T09S | R03W | Q | М | 37 08 32 | 122 11 43 | 900 | | 1943 | | | 44 | | 03 1034 | BRADLEY | 540 | SEC 08 | T24S | R11E | | M | 35 52 00 | 120 48 00 | 900 | | 1946
1946 | | | 27
27 | | 3 1142
1 1170 | BRYSON
BUENA VISTA | 925
1640 | SEC 34
SEC 27 | T24S
T13S | ROSE
RO7E | R | M
M | 35 48 00
36 46 00 | 121 05 00
121 11 00 | 900 | | 1946 | | | 35 | | 7 1206 | BURLINGAME | 10 | | T04S | RO5W | | M | 37 35 00 | 122 21 00 | 900 | | 1946 | | | 4] | | 4 1216 | BURTON RANCH | 530 | SEC 09 | TOIS | R02W | | М | 37 52 00 | 122 05 00 | 900 | | 1955 | | | 07 | | 1 1247 | BUZZARD LAGOON | 1275 | SEC 26 | T10S | RO1E | M | M | 37 02 00 | 121 50 00
121 49 06 | 000
900 | | 1959
1874 | | | 60 | | 5 1281
6 1285 | CALAVERAS RESERVOIR CALERO RESERVOIR | 805
5 00 | SEC 24
SEC 04 | T05S
T09S | RO1E
RO2E | E | M
M | 37 29 12
37 10 48 | 121 49 06 | 414 | | 1958 | | | 4: | | 3 1312 | CALISTOGA | 364 | SEC 36 | T09N | RO7W | K | M | 38 35 05 | 122 34 59 | 900 | | 1873 | | | 28 | | 6 1341-10 | CAMBRIAN PARK | | | | | | М | 37 15 12 | 121 55 24 | 426 | | | | | 43 | | 6 1377-01 | CAMPBELL WATER COMPANY | 192 | SEC 35 | TOIS | ROIW | С | M | 37 17 00 | 121 57 00 | 000 | | 1897 | | 09 | 4: | | 4 1534
3 1537 | CARMEL VALLEY CARNEROS VALLEY | 425
300 | SEC 03
SEC 13 | T17S
T05N | RO2E
RO5W | | M | 36 29 00
38 17 00 | 121 44 00
121 21 30 | 900
901 | | 1957
1931 | | | 23 | | 9 1602 | CAZADERO | 1040 | SEC 13 | T08N | R12W | R | M | 38 31 48 | 123 07 31 | 900 | | 1939 | | | 49 | | 1 1739 | CHITTENDEN PASS | 125 | SEC 12 | T12S | RO3E | | М | 36 54 00 | 121 36 00 | 900 | | 1945 | | | 44 | | 1 1739-01 | CHITTENDEN | 104 | SEC 11 | T12S | R03E | K | M | 36 54 08 | 121 36 17 | 909 | | 1960 | | | 44 | | 3 1743
1 1766 | CHOLAME ALLEY RANCH
CIENEGA | 1975
900 | SEC 12
SEC 18 | T26S
T14S | R16E
R06E | R | M | 35 41 00
36 42 54 | 120 12 00
121 20 48 | 900 | | 1925
1950 | | | 35 | | 9 1838 | CLOVERDALE 3 SSE | 320 | SEC 29 | T11N | | 2 | | 38 46 00 | | 900 | | 1950 | | | 49 | | 9 1840 | CLOVERDALE 11 W | 1820 | SEC 17 | T11N | R12W | | M | 38 46 00 | 123 13 00 | 900 | | 1939 | | | 49 | | 3 1919 | COLLINSVILLE | 34 | SEC 22 | TO3N | R01E | F | M | 38 05 26 | 121 51 17 | 000 | | 1946 | | | 48 | | 4 1962
0 2048 | CONCORD 3 E
CORRALITOS | 200
260 | SEC 12 | T01N
T11S | RO1W
RO1E | | | 37 58 00
36 59 00 | 121 59 00
121 48 00 | 900 | | 1954
1958 | | | 0 | | 79 2105 | COYOTE DAM | 720 | SEC 34 | | R12W | | | 39 11 00 | 123 11 00 | 901 | | 1960 | | | 23 | | 6 2109 | COYOTE RESERVOIR | 800 | SEC 09 | TlOS | RO4E | С | М | 37 05 06 | 121 32 24 | 414 | | 1938 | | | 4: | | 0 2159 | CREST RANCH | 2640 | | T10S | RO2W | | M | 37 05 06 | 122 08 00 | 000 | | 1948 | | | 40 | | 24 2177
00 2290 | CROCKETT
DAVENPORT | 12
273 | SEC 32
SEC 32 | T03N
T10S | RO3W | 0 | | 38 02 00
37 01 00 | 122 13 00
122 12 00 | 900
900 | | 1918
1910 | | | 07 | | 2 2362 | DEL MONTE | 46 | | T15S | RO1E | | | 36 36 00 | 121 52 00 | 900 | | 1911 | | | 2 | | 3 2399-48 | DENVERTON 1 S | 22 | SEC 08 | T04N | ROIE | F | М | 38 12 23 | 121 53 28 | 000 | | 1950 | | | 48 | | 3 2580 | DUTTONS LANDING | 20 | SEC 09 | T04N | RO4W | R | M | 38 12 07 | 122 18 11 | 900 | | 1955 | | | 28 | | 3 2933
3 2934 | FAIRFIELD FIRE STATION | 13
34 | SEC 25
SEC 24 | T05N
T05N | RO2W
RO2W | | | 38 15 01
38 15 36 | 122 02 25
122 02 26 | 900 | | 1940
1951 | | | 4 | | 8 3161 | FORT BRAGG | 80 | SEC 06 | T18N | R17W | N | | 39 26 45 | 123 48 24 | 900 | | 1895 | | | 2. | | 8 3164 | FORT BRAGG AVIATION | 74 | SEC 25 | T18N | R18W | K | М | 39 23 34 | 123 48 51 | 900 | | 1940 | | | 2: | | 8 3191 | FORT ROSS | 116 | SEC 30 | T08N | R12W | | M | 38 31 00 | 123 15 00 | 900 | | 1874 | | | 4 | | 1 3232
1 3238 | FREEDOM 8 NNW
FREMONT PEAK | 1495
2500 | SEC 24
SEC 35 | T10S
T13S | RO1E
RO4E | | | 37 03 00
36 45 36 | 121 49 00
121 29 54 | 900 | | 1952
1950 | | | 3. | | 5
3387 | GERBER RANCH | 2140 | SEC 36 | T06S | | P | | 37 22 00 | 121 29 12 | 900 | | 1912 | | | 4: | | 9 3395-07 | GEYSERVILLE HOCKING | 200 | SEC 18 | TION | RO9W | J | М | 38 43 00 | 122 53 30 | 806 | | 1965 | | | 49 | | 1 3417 | GILROY | 194 | SEC 06 | TIIS | RO4E | | M | 37 00 00 | 121 34 00 | 900 | | 1957 | | | 4. | | 1 3419
1 3422 | GILROY 8 NE
GILROY 14 ENE | 1050
1350 | SEC 29
SEC 05 | T10S
T10S | ROSE
ROSE | | | 37 02 00
37 06 00 | 121 27 00
121 20 00 | 900 | | 1942
1940 | | | 4: | | 2 3502 | GONZALES 9 ENE | 2350 | SEC 15 | T16S | RO6E | | | 36 33 00 | 121 18 00 | 900 | | 1943 | | | 3 | | 9 3577 | GRATON | 200 | SEC 21 | TOTN | R09W | P | М | 38 25 51 | 122 51 49 | 000 | | 1928 | | | 49 | | 9 3578 | GRATON 1 W | 210 | | TO7N | R09W | | M | 38 26 00 | 122 53 00 | 900 | | 1896 | 1968 | | 4 | | 2 3591
3 3612-01 | GREENFIELD BAKER GREEN VALLEY | 280
414 | SEC 03 | T18S
T05N | RO7E
RO3W | | | 36 19 24
38 17 00 | 121 14 36
122 10 00 | 901 | | 1958
1893 | | 18 | 2 | | 6 3681 | GUADALUPE RESERVOIR | 450 | SEC 29 | T08S | | Q | | 37 12 00 | 121 53 00 | 414 | | 1936 | | | 4 | | 9 3683 | GUERNEVILLE | 145 | SEC 29 | TO8N | R10W | P | М | 38 30 15 | 122 59 40 | 900 | | 1939 | | | 49 | | 8 3714 | HALF MOON BAY | 60 | SEC 29 | TO5S | R05W | | M | 37 27 41 | 122 26 01 | 900 | | 1965 | | | 4 | | 03 3722 | HAMES VALLEY HAYWARD 6 ESE | 725
715 | SEC 32
SEC 21 | T23S
T03S | R10E
R01W | N | M | 37 39 08 | 121 59 09 | 900 | | 1963
1940 | | | 60 | | E4 3863 | DOLWARD DESCRIPTION | 113 | SEC ZI | | RO1W | 14 | | | 121 59 09 | | | 1740 | | | 49 | #### INDEX OF CLIMATOLOGICAL STATIONS FOR 1967-68 | | Station | Elevation
On Feet) | tion | Township | Range | re Tract | Meridian | Lotitude | lude | rator | perotor's
Index
lumber | Record | Record | Missing | Code | |---|--|------------------------------------|--|--------------------------------------|--------------------------------------|----------|------------------|--|---|---------------------------------|-------------------------------|--------------------------------------|--------------|---------|----------------------------| | Number | Name | Elevi
On F | Section | Town | Rai | 40-Acre | Base & | l Lot | O - Longifude | Cooperator | Cooperator
Index
Number | Rec | R. R. | Years | County | | F9 3878
D1 3925
D1 3928
D1 4022
D1 4025 | HEALDSBURG 2 E HERNANDEZ 2 NW HERNANDEZ 7 SE HOLLISTER 1 SW HOLLISTER 2 | 102
2160
2765
279
284 | SEC 29
SEC 06
SEC 10 | T09N
T17S
T19S
T13S
T12S | RO9W
R10E
R12E
R05E
R05E | | M
M
M
M | 38 37
36 25 00
36 18 00
36 50 00
36 51 00 | 122 50 00
120 55 00
120 42 00
121 25 00
121 24 00 | 900
900
900
900
900 | | 1943
1940
1940
1874
1938 | | | 49
35
35
35
35 | | D1 4035
F9 4100
F9 4277
F9 4480
E2 4500 | HOLLISTER 10 ENE HOPLAND LARGO STATION INVERNESS MERY KELLOGG KENTFIELD | 2578
550
150
1800
80 | SEC 09
SEC 08 | T12S
T13N
T03N
T09N
T01N | R07E
R12W
R09W
R07W
R06W | Q | M
M
M
M | 36 55 00
39 01 00
38 05 24
38 40 00
37 56 47 | 121 14 00
123 07 00
122 51 06
122 40 00
122 33 02 | 900
900
000
900
900 | | 1962
1948
1951
1936
1888 | 1968 | | 35
23
21
49
21 | | F9 4502
D2 4555
F9 4593
E4 4633
F9 4652 | KENT LAKE KING CITY KNIGHTS VALLEY LAFAYETTE 2 NNE LAGUNITAS LAKE | 360
320
480
540
785 | SEC 08
SEC 18 | T02N
T20S
T09N
T01N
T01N | RO8W
RO8E
RO7W
RO2W
RO7W | | M
M
M
M | 37 59 54
36 12 00
38 37 00
37 55 00
37 56 48 | 122 42 30
121 08 00
122 40 00
122 06 00
122 35 42 | 413
900
900
900
413 | | 1954
1887
1964
1956
1881 | | | 21
27
49
07
21 | | E8 4660
E3 4677
D3 4767
E6 4916
E6 4922 | LA HONDA LAKE CURRY LA PANZA RANCH LEROY ANDERSON DAM LEXINGTON RESERVOIR | 670
386
1550
700
700 | SEC 14
SEC 19
SEC 20
SEC 10
SEC 05 | T07S
T06N
T29S
T09S
T09S | RO4W
RO2W
R17E
RO3E
RO1W | K
J | M
M
M
M | 37 19 00
38 21 18
35 23 00
37 09 48
37 10 36 | 122 16 00
122 07 18
120 10 00
121 37 48
121 59 18 | 900
418
900
414
414 | | 1950
1926
1948
1950
1951 | | 09 | 41
28
40
43
43 | | D3 4963
E5 4997
E5 4996
D3 5017
E6 5123 | LINN RANCH LIVERMORE SEWAGE PLANT LIVERMORE 2 SSW LOCKWOOD 2 N LOS GATOS | 870
405
545
1104
428 | SEC 07
SEC 12
SEC 20
SEC 34 | T26S
T03S
T03S
T22S
T08S | R12E
R01E
R02E
R08E
R01W | F
A | M
M
M
M | 35 41 06
37 41 28
37 39 00
35 58 00
37 13 00 | 120 43 24
121 48 20
121 47 00
121 05 00
121 59 00 | 000
000
900
900
900 | | 1925
1961
1871
1940
1885 | 1968
1967 | | 40
60
60
27
43 | | E6 5123-04
D0 5125
D4 5184
E3 5333
E4 5371 | LOS CATOS WRIGHT LOS CATOS 4 SW LUCIA WILLOW SPRINGS MARE ISLAND NAVY MARTINEZ 3 S | 1610
2215
360
52
225 | SEC 26
SEC 01
SEC 05 | T09S
T09S
T24S
T03N
T02N | RO1W
RO2W
RO5E
RO3W
RO2W | Н | M
M
M
M | 37 07 24
37 11 00
35 53 00
38 06 00
37 58 00 | 121 56 00
122 02 00
121 27 00
122 16 12
122 08 00 | 000
900
900
900
900 | | 1947
1957
1941
1867
1941 | 1968 | | 43
43
27
48
07 | | E4 5372
E4 5377
E2 5647
D4 5795
E6 5844 | MARTINEZ 3 SSE MARTINEZ FIRE STATION MILL VALLEY MONTEREY MORGAN HILL 2 E | 280
26
10
335
225 | SEC 31 | T02N
T02N
T01N
T15S
T09S | RO2W
RO2W
RO6W
RO1E
RO3E | | | 37 58 00
38 01 00
37 53 48
36 36 00
37 08 00 | 122 06 00
122 08 00
122 31 36
121 54 00
121 37 00 | 900
900
411
900
900 | | 1956
1891
1944
1878
1943 | | | 07
07
21
27
43 | | E6 5846
D1 5853
E4 5915
E5 5933
D1 5973 | MORGAN HILL 6 WNW MORGAN HILL S C S MOUNT DIABLO NORTH GATE MOUNT HAMILTON MOUNT MADONNA | 660
350
2070
4206
1800 | SEC 20
SEC 02
SEC 35 | T09S
T09S
T01S
T07S
T10S | RO2E
RO3E
RO1W
RO3E
RO2E | R | M
M
M | 37 09 00
37 08 00
37 52 07
37 20 00
37 01 00 | 121 46 00
121 39 00
121 56 05
121 39 00
121 43 00 | 900
900
900
900
900 | | 1945
1952
1881
1945 | | | 43
43
07
43
44 | | D1 5973-11
F9 5996
E2 6027
D3 6056
E3 6074 | MT MADONNA COUNTY PARK MT TAMALPAIS 2 SW MUIR WOODS NACIMIENTO DAM NAPA STATE HOSPITAL | 1880
1480
170
770
73 | SEC 01 SEC 15 SEC 14 | T01N
T25S | RO2E
RO7W
R10E
RO4W | | M
M
M | 37 00 42
37 54 00
37 54 00
35 46 00
38 16 40 | 121 42 12
122 36 00
122 34 00
120 53 00
122 15 50 | 909
900
900
900
900 | | 1937
1959
1940
1957
1877 | | | 43
21
21
40
28 | | F9 6105
E5 6144
F9 6187
E5 6199-10
F9 6290 | NAVARRO 1 NW NEWARK NICASIO NILES PINNA NOVATO 8 WNW | 220
14
75
350 | SEC 18
SEC 01 | T05S
T03N
T04S | R15W
R02W
R08W
R01W
R08W | Q | M
M
M | | 123 33 47
122 01 43
122 43 00 | 900
900
413 | | 1958
1891
1962
1943 | | | 23
60
21
60
21 | | E2 6290-02
E4 6332-01
E4 6333
E4 6335
E3 6351 | NOVATO FIRE HOUSE OAKLAND 39TH AVENUE OAKLAND CITY HALL OAKLAND WB AP OAKVILLE 1 WNW | 18
40
3
165 | SEC 35 | T02S
T01S
T02S | RO6W
RO3W
RO4W
RO3W
RO5W | G | M
M
M | 38 06 30
37 48 00
37 44 00
38 26 46 | 122 33 42
122 16 00
122 12 00
122 25 07 | 411
907
900
900
900 | | 1957
1960
1949
1939
1906 | | | 21
60
60
60
28 | | E3 6356
F9 6370
D1 6610
E6 6646
D2 6650 | OAKVILLE 4 SW NO. 2 OCCIDENTAL PAICINES OHRWALL RANCH PALO ALTO CITY HALL PALOMA | 1685
960
950
43
1835 | SEC 01
SEC 34
SEC 12
SEC 01
SEC 23 | T06N
T07N
T14S
T06S
T18S | R10W
R05E | D | M
M
M | 38 23 55
38 24 46
36 44 00
37 26 43
36 21 00 | 122 27 54
122 57 43
121 22 00
122 08 22
121 30 00 | 900
900
900
900
900 | | 1963
1940
1924
1953
1940 | | | 28
49
35
43
27 | | D3 6703
D3 6706
D3 6730
D3 6736
D3 6742 | PARKFIELD PARKFIELD 7 NNW PASO ROBLES PASO ROBLES 5 NW PASO ROBLES FAA AP | 1482
3590
700
1040
803 | SEC 35
SEC 21
SEC 33
SEC 11
SEC 13 | T23S
T22S
T26S
T26S
T26S | R14E
R14E
R12E
R11E
R12E | N | M
M
M | 35 53 00
36 59 46
35 38 00
35 41 00
35 40 00 | 120 26 00
120 28 26
120 41 00
120 45 00
120 38 00 | 900
900
900
900
900 | | 1938
1948
1887
1940
1944 | | | 27
27
40
40
40 | | E6 6791-43
E2 6826
E2 6826-01
F8 6851-01
F8 6851-02 | PENITENCIA RAIN GAGE PETALUMA FIRE STATION NO. 2 PETALUMA BURNS PHILO 2 NW PHILO 4 NW | 16 | SEC 23
SEC 33
SEC 02 | T06S
T05N
T04N
T14N
T15N | RO7W
RO8W
R15W | A | M
M
M | 37 24 00
38 14 28
38 13 00
39 05 30
39 01 00 | 121 49 54
122 37 44
122 42 48
123 28 30
123 37 00 | 426
900
901
000
403 | | 1871
1959
1953 | | | 43
49
49
23
23 | #### INDEX OF CLIMATOLOGICAL STATIONS FOR 1967-68 | | Station | Elevation
(in Feet) | ection | Township | Ronge | cre Troct | Meridion | ıfude | Longitude | Cooperator | operator's
Index
Number | Record | Record |
Missing | y Code | |---|---|-------------------------------------|--|--------------------------------------|--------------------------------------|-----------|------------------|--|---|---------------------------------|-------------------------------|--------------------------------------|--------|---------|----------------------------| | Number | Name | Ele
(In | Sec | Tow | R | 40-Acre | Bose & | וווס | - Long | Coop | Cooperator
Index
Number | a a | 8.9 | Yeors | County | | P9 6853
D2 6926
E5 6991-05
F8 7009
E4 7070 | PHOENIX LAKE DAM PINNACLES NATIONAL MONUMENT PLEASANTON NURSERY POINT ARENA PORT CHICAGO N A D | 175
1310
345
122
50 | SEC 02
SEC 20
SEC 12 | T17S
T03S
T12N
T02N | RO7E
RO1E
R17W
RO1W | ì | M
M
M
M | 37 57 18
36 29 00
37 40 00
38 55 00
38 01 00 | 122 34 24
121 11 00
122 53 00
123 42 00
122 01 00 | 413
900
000
900
900 | | 1937
1937
1939
1940
1946 | | | 21
35
60
23
07 | | E8 7086
F9 7108
F9 7109
D2 7150
D1 7190 | PORTOLA STATE PARK POTTER VALLEY 3 SE POTTER VALLEY POWERHOUSE PRIEST VALLEY QUIEN SABE HAY CAMP | 422
1100
1014
2300
1630 | SEC 08
SEC 27
SEC 06
SEC 17
SEC 27 | T08S
T17N
T17N
T20S
T12S | RO3W
R11W
R11W
R12E
R07E | Q | M
M
M
M | 37 14 42
39 18 00
39 22 00
36 11 00
36 51 30 | 122 12 42
123 04 00
123 08 00
120 42 00
121 11 48 | 901
900
900
900
900 | | 1959
1952
1911
1898
1949 | | | 41
23
23
27
35 | | D1 7249
E6 7339
F9 7351
E4 7414
D4 7539-01 | RANCHO QUIEN SABE
REDWOOD CITY
REDWOOD VALLEY
RICHMOND
ROOSEVELT RANCH | 1800
31
718
55
1100 | SEC 04
SEC 09
SEC 24 | T13S
T05S
T16N | RO7E
RO3W
R12W | D
F | M
M
M
M | 36 50 12
37 29 00
39 16 00
37 56 00
36 10 48 | 121 12 48
122 14 00
123 12 00
122 21 00
121 41 48 | 000
900
900
900
900 | | 1931
1899
1937
1950
1946 | | | 35
41
23
07
27 | | E3 7643
E3 7646
E4 7661
D2 7668
D2 7669 | SAINT HELENA
SAINT HELENA 4 WSW
SAINT MARYS COLLEGE
SALINAS 2 E
SALINAS FAA AP | 225
1792
625
80
80 | SEC 31
SEC 04
SEC 17 | T08N
T07N
T01S
T14S
T14S | RO5W
RO6W
RO2W
RO3E
RO3E | С | M
M
M
M | 38 30 25
38 30 00
37 50 00
36 40 00
36 40 00 | 122 27 40
122 32 00
122 06 00
121 37 00
121 36 00 | 900
900
900
900
900 | | 1907
1939
1942
1958
1873 | | | 28
21
07
27
27 | | D3 7672
E2 7707-01
D3 7714
D2 7716
D1 7719 | SALINAS DAM
SAN ANSELMO
SAN ANTONIO MISSION
SAN ARDO
SAN BENITO | 1380
100
1060
440
1355 | SEC 08 SEC 18 SEC 09 SEC 27 | T30S
T02N
T22S
T22S
T16S | R14E
R06W
R07E
R10E
R08E | Н | M
M
M
M | 35 20 00
37 58 36
36 01 00
36 02 00
36 30 30 | 120 30 00
122 33 42
121 15 00
120 54 00
121 04 54 | 900
411
900
900
900 | | 1942
1957
1959
1894
1936 | | | 40
21
27
27
35 | | D4 7731
D1 7755
E8 7767
E7 7769
E7 7772 | SAN CLEMENTE DAM SAN FELIPE HIGHWAY STATION SAN FRANCISCO SUNSET SAN FRANCISCO WB AIRPORT SAN FRANCISCO F O B | 600
365
300
8
52 | SEC 23
SEC 32 | T17S
T10S
T02S
T04S
T02S | RO2E
RO6E
RO6W
RO5W
RO5W | | M
M
M
M | 36 26 12
37 01 00
37 46 00
37 37 00
37 47 00 | 121 42 30
121 20 00
122 30 00
122 23 00
122 25 00 | 900
900
900
900
900 | NPGS18 | 1940
1943
1948
1928
1931 | | | 27
43
80
41
80 | | E8 7807
E6 7821
E6 7824-01
D1 7834
D1 7835 | SAN GREGORIO 2 SE
SAN JOSE
SAN JOSE DECID F F S
SAN JUAN BAUTISTA 3 SSE
SAN JUAN BAUTISTA MISSION | 245
70
90
615
200 | SEC 23
SEC 15
SEC 10 | | RO5W
RO1E
RO1W
RO4E
RO4E | Q
J | | | 122 21 38
121 54 00
121 57 00
121 31 00
121 32 00 | | | 1964
1874
1935
1943
1900 | | 02 | 41
43
43
35
35 | | E7 7864
E2 7880
E2 7880-08
E6 7912
D0 7916 | SAN MATEO
SAN RAFAEL
SAN RAFAEL NO. 1
SANTA CLARA UNIVERSITY
SANTA CRUZ | 31
25 | SEC 29 | TO2N
TO7S | RO6W
RO6W | P | M
M
M | 37 58 00
37 58 24
37 20 52 | 122 19 00
122 32 00
122 31 30
121 56 27
122 01 00 | 900
900
413
900
900 | | 1874
1948
1876
1881
1866 | | | 41
21
21
43
44 | | D3 7930
D3 7933
F9 7964
F9 7965
E6 7998-01 | SANTA MARGARITA 2 SW
SANTA MARGARITA BSTR
SANTA ROSA SEWAGE PLANT
SANTA ROSA
SARATOGA CLARK | 1100 | SEC 36
SEC 25
SEC 21 | T29S
T07N
T07N | R12E | P | M
M
M | 35 22 00
38 26 24
38 27 00 | 120 38 00
120 38 00
122 45 12
122 42 00
121 59 42 | 900 | | 1940
1931
1956
1888
1956 | | 03 | 40
49
49
43 | | E6 7998-02
E6 7998-03
E6 8068
F9 8072
F9 8272 | SARATOGA GAP MAINT STN
SARATOGA KRIEGE
SEARSVILLE LAKE
SEBASTOPOL 4 SSE
SKAGGS SPRING LAS LOMAS | 145 | SEC 12
SEC 24
SEC 36 | T06S
T06N | RO9W | | M | 37 24 00
38 21 06 | 122 02 00
122 14 00
122 48 42
123 08 04 | 900 | | 1960
1949
1935
1939 | | | 43
43
41
49
49 | | D2 8276
D2 8338
D2 8338-01
E2 8351
E0 8376 | SLACK CANYON
SOLEDAD
SOLEDAD C T F
SONOMA
S E FARALLON | 204 | | T17S
T17S | RO6E | | M
M
M | 36 26 00
36 28 26 | 121 22 34 | 900
900
806
900
900 | | 1955
1874
1961
1952
1941 | | | 27
27
27
49
80 | | D2 8446
D2 8446-01
D1 8447
E6 8519
D1 8680 | SPRECKLES HIGHWAY BRIDGE
SPRECKELS
SPRECKELS HILL-LAGUNA SECA
STEVENS CREEK RESERVOIR
SUNSET BEACH STATE PARK | 384 | SEC 16 | T15S
T09S
T07S | RO3E | Н | M
M
M | 36 37 14
37 12 00
37 18 00 | 121 41 00
121 39 27
121 44 00
122 05 00
121 50 00 | 414
414 | | 1905
1905
1937
1956 | 1967 | | 27
27
43
43
44 | | E2 8779
D3 8849
F9 8885
E2 8920-21
F9 9122 | TAMALPAIS VALLEY TEMPLETON THE GEYSERS TIBURON TOPHAM UKIAH | | SEC 29
SEC 14
SEC 17 | T27S
T11N
T01S | RO9W
RO5W | G | M
M
M | 35 32 54
38 48 02
37 52 24 | 122 32 36
120 42 20
122 49 32
122 27 12
123 12 00 | 000
900
000 | | 1959
1886
1939
1960
1877 | | 05 | 21
40
49
21
23 | | F9 9124
E4 9185
D1 9189
D3 9221
E6 9270 | UKIAH 4 WSW UPPER SAN LEANDRO FIL UPPER TRES PINOS VALLETON VASONA RESERVOIR | 2050 | SEC 11
SEC 07
SEC 32 | T02S
T15S
T23S | RO9E | G | M
M
M | 37 46 00
36 38 00
35 53 00 | 123 17 00
122 10 00
121 02 00
120 42 00
121 58 00 | 900
900
900 | | 1951
1944
1940
1940 | | | 23
07
35
27
43 | # TABLE A-I (Cont.) INDEX OF CLIMATOLOGICAL STATIONS FOR 1967-68 | | Station | Elevation
(In Feet) | Section | Township | Ronge | Acre Tract | & Meridion | Latitude | Longitude | Cooperator | Cooperator's
Index
Number | Record | Record | Missing . | ty Code | |---|---|----------------------------------|--------------------------------------|----------------------|----------------------|------------|-------------|--|---|---------------------------------|---------------------------------|--------------------------------------|--------|-----------|----------------------| | Number | Name | E16 | \$S | Ę | α . | 40-Acre | Bose & | 0 1 11 | 0 1 11 | Coo | Coop | œ w | E W | Years | County | | F9 9273
E3 9305
E4 9420
E4 9423
E4 9426 | VENADO VETERANS HOME WALMAR SCHOOL WALNUT CREEK 2 ESE WALNUT CREEK 2 ENE | 1260
170
128
245
220 | SEC 19
SEC 01
SEC 36
SEC 30 | TO9N
TO6N
TO1N | RO5W
RO2W | | M
M
M | 38 37 00
38 23 00
37 57 00
37 53 00
37 54 00 | 123 01 00
122 22 00
122 05 00
122 02 00
122 01 00 | 900
000
900
900
900 | | 1939
1912
1954
1887
1944 | | | 49
28
07
07 | | E4 9427
D1 9473
D0 9675
E3 9675-41 | WALNUT CREEK 4 E WATSONVILLE WATERWORKS WILDER RANCH WILD HORSE VALLEY WOODACRE | 265
95
50
1240
430 | SEC 29
SEC 32
SEC 10 | TOIN
TIIS
TO5N | RO1W
RO2E
RO3W | | M | 37 54 23
36 56 00
36 57 36
38 17 53
38 00 24 | 121 59 40
121 46 00
122 05 24
122 11 13
122 38 30 | 900
900
000
418
808 | 049770 | 1954
1880
1924
1950 | | | 0:
44
48
2: | | E6 9814
F8 9851
E3 9861 | WRIGHTS YORKVILLE YOUNTVILLE GAMBLE | 1600
1120
120 | SEC 23
SEC 08
SEC 24 | T09S
T12N
T07N | ROIW
R12W
RO5W | M
P | | 37 08 00
38 54 18
38 26 05 | 121 57 00
123 18 46
122 22 05 | 900
900
806 | | 1918
1939
1962 | | | 43
23
28 | #### TABLE A-2
PRECIPITATION DATA The definition of terms and abbreviations used in connection with this table are as follows: - No record or record incomplete. - * Amount included in the following measurement. Time distribution unknown. - E Wholly or partially estimated. - T Trace, an amount too small to measure. - V Includes total from previous month. - RB Record began. - RE Record ended. Precipitation values are shown to the nearest hundredth (.01) of an inch, except where Fischer & Porter recording rain gages are used, these values are shown to the nearest tenth (.1) of an inch. Precipitation in Inches | Station Name | Total
July 1 | - | | 19 | 67 | | | | | | | 1968 | | | | | Total
Oct. 1 | |--|--|------------------------|------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------|------------------------|--------------------------------------|-----------------------|--| | Station Name | June 30 | July | Aug | Sept. | Oct. | Nov | Dec | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug | Sept. | Sept 30 | | CENTRAL COASTAL AREA | | | | | | | | | | | | | | | | | | | SANTA CRUZ DO | | | | | | | | | | | | | | | | | | | BEN LOMOND NO. 3 BOULDER CREEK LOCATELLI RCH CORRALITOS CREST RANCH DAVENPORT | 45.03

44.97
21.06 | 0 0 0 | RB
0
0
0 | 0
0
0
0
T | 0.54
1.05
0.20
0.93
0.34 | 2.53
3.42
1.90
3.36
1.04 | 5.45
9.03

9.40
2.99 | 10.86
14.94
5.10
13.42
5.72 | 6.45
7.68
3.70
8.05
5.79 | 5.24
6.16
5.10
6.91
3.94 | 1.03
1.08
0.80
1.27
0.78 | 0.54
1.67
0.10
1.63
0.46 | 0
0
0
0 | 0
0
0
0 | 0.49
0.92
0.70
0.93
0.44 | T
0
0
0
0 | 33.13
45.95

45.90
21.58 | | LOS GATOS 4 SW
SANTA CRUZ
SUNSET BEACH STATE PARK
WILDER RANCH | 36.03
20.91
14.00
21.44 | 0 0 0 | T
0
0 | 0
0
0 | 0.52
0.13
0
0.11 | 2.46
2.14
1.20
1.75 | 5.93
3.10
2.00
2.91 | 15.46
3.82
3.00
4.81 | 4.47
4.93
2.70
5.58 | 6.04
5.64
4.10
5.04 | 1.20
0.97
0.90
1.00 | 0.95
0.18
0.10
0.24 | 0
0
0 | 0
T
0 | 0.30
0.55
0.20
0.47 | 0 0 0 | 37.33
21.46
14.20
21.91 | | PAJARO-SAN BENITO RIVERS D1 | | | | | | | | | | | | | | | | | | | BUENA VISTA BUZZARD LAGOON CHITTENDEN PASS CHITTENDEN CIENEGA | 23.19
14.59
13.96
11.55 | 0 0 0 0 | 0
0
T
0 | 0
T
T
0.36 | 0.41
0.34
0.29
0.24 | 2.24
0.99
0.95
0.76 | 4.65
4.26
4.10
2.99 | 5.79
3.12
3.00
2.70 | 4.66
2.08
1.86
1.50 | 1.75
4.61
2.85
2.81
2.15 | 0.14
0.72
0.78
0.77
0.70 | 0.43
0.11
0.17
0.18
0.15 | 0
0
0
0 | 0
0
0
0 | 0.05
0.16
0.19
0.16 | 0 0 0 0 0 0 | 23.35
14.78
14.12
11.19 | | FREEDOM 8 NNW GILROY GILROY 14 ENE HERNANDEZ 2 NW HERNANDEZ 7 SE | 12.56
11.24
9.30 | 0 0 0 0 | 0
T
0
0 | 0
0.01
0
0.65
0.49 | 0.48
0.32
0.30
0.07
0.10 | 2.14
1.54
1.06
1.33
1.87 | 5.05
2.61
2.34
1.53
1.66 | 7.69
3.23
2.43
1.22 | 3.99
1.68
1.99
1.34
1.62 | 2.92
2.20
2.20
2.50 | 0
0.79
0.76
1.01 | 0.17
0.25
0.13
0.20
0.52 | 0
0
0
0 | 0 0 0 0 0 | 0.52
0.02
0.08
T | 0
0
0
0 | 12.57
11.32
8.65 | | HOLLISTER 1 SW HOLLISTER 2 HOLLISTER 10 ENE MORGAN HILL 2 E MORGAN HILL SCS | 9.05
9.20
12.12E
13.37E | 0 0 0 0 | T
0
0
0 | 0.01
0
0
T | 0.36
0.40
0.10
0.22
0.20 | 1.31
1.30
2.13
1.66
1.90 | 1.41
1.60
1.91E
2.27
2.30 | 1.51
1.40
2.18
3.93
4.10 | 1.20
1.30
2.26
1.23
1.20 | 2.62
2.70
2.81
3.21
3.30 | 0.41
0.40
0.35
0.70
0.80 | 0.22
0.10
0.38
0.15 | 0
0
0
0 E
0 | 0 0 0 0 0 | 0
0
0.41
0.39
0.10 | 0
0
0
0 | 9.04
9.20
12.53
13.76E | | MOUNT MADONNA MOUNT MADONNA COUNTY PARK PAICINES OHRWALL RANCH QUIEN SABE HAY CAMP RANCHO QUIEN SABE | 22.66
21.11
9.39
11.31
10.62 | 0
0.02
0
0 | 0
0.01
0
0.05 | 0
0.04
0.15
0.04 | 0.37
0.44
0.25
0.37
0.59 | 2.20
1.87
0.65
1.13
1.05 | 4.16
3.98
2.27
2.96
2.60 | 5.93
4.89
1.98
1.79
1.84 | 4.08
4.11
1.20
1.79
1.38 | 4.73
4.17
2.11
2.42
2.38 | 0.97
1.12
0.45
0.30
0.35 | 0.22
0.35
0.33
0.40
0.43 | 0
0.11
0
0.06 | 0
0.03
0
T | 0.64
0.54
0
0.22
0.25 | 0
0.10
0
0 | 23.30
21.71
9.24
11.44
10.87 | | SAN BENITO SAN FELIPE HIGHWAY STATION SAN JUAN BAUTISTA 3 SSE SAN JUAN BAUTISTA MISSION SPRECKELS HILL-LAGUNA SECA | 6.44
11.03
12.27 | 0
0
0
0
RE | 0 0 0 | 0.25
0
0
0.05 | 0.09
0.46
0.15 | 0.94
1.27
1.76
1.30 | 0.95
2.68
1.68
2.50 | 0.93
1.94
2.15 | 0.57
1.90
1.69
1.29 | 1.75
1.95
3.50 | 0.70
0.67
0.92
0.97 | 0.26
0.16
0.42
0.30 | 0
0
0 | 0
0
0
T | 0.13
0.15
0.10
0.02 | 0
0
0 | 6.32
11.18
12.37 | | UPPER TRES PINOS WATSONVILLE WATERWORKS | 15.59 | 0 | 0 | 0.20 | 0.07 | 1.43 | 1.30 | 1.34 | 0.87
2.58 | 1.65 | 0.73 | 0.06 | 0
T | 0 0 | 0
0.22 | 0.01 | 15.82 | | LOWER SALINAS RIVER D2 | | | | | | | | | | | | | | | | | | | ARROYO SECO DEL MONTE FREMONT PEAK GONZALES 9 ENE GREENFIELD BAKER | 18.55
8.22
6.40 | 0 0 0 0 0 | 0
0
0
0 | 0.18
0.14
0.12
0.06
0.62 | 0.25
0.21
0.67
0.18
0.08 | 1.43
1.29
2.34
1.36
0.66 | 1.94
1.31
2.59
1.44
1.34 | 2.82
1.81
4.30
1.38
0.79 | 0.94
0.70
2.09
0.52
0.37 | 2.30
1.75
4.79
2.32
1.76 | 0.33
0.66
0.45
0.78 | 0.17

0.80
0.37
0 | 0
0
0.19
0.14 | 0
0
T
0 | 0
0.08
0.73
0 | 0
0
0
0 | 19.16
8.16
5.78 | | HAMES VALLEY KING CITY MONTEREY PALOMA PINNACLES NATL MONUMENT | 6.62
6.04
10.97
13.61
9.14 | 0
0.02
T | 0
0
0.06
0 | 0.54
0.49
0.17
0.69
0.14 | 0
0.05
0.38
0.32
1.09 | 1.56
0.62
1.61
1.26
0.90 | 0.60
0.98
2.27
1.82
1.49 | 0.85
0.88
0.88
3.06
0.99 | 0.55
0.88
1.40
2.22
1.17 | 1.65
1.43
3.06
3.04
2.30 | 0.87
0.71
0.79
0.68
0.90 | T
T
0.32
0.29
0.16 | 0
0
0.01
0.23 | 0
0.06
T
0.02 | T
T
0.23
0.06 | 0
0
0.05
0 | 6.08
5.55
11.06
12.98
9.02 | | PRIEST VALLEY SALINAS 2 E SALINAS FAA AIRPORT SALINAS DE DAMPIERRE SAN ARDO | 11.55
8.82
8.10 | 0
0
0
T | 0.04
0
T
T | 0.11
0.16
0.15
0.15 | 0.15
0.08
0.05
RE
0.02 | 2.89
1.35
1.38 | 1.87
1.87
1.43 | 1.44
1.93
1.82 | 1.39
0.97
0.85 | 2.32
2.05
2.03 | 1.01
0.32
0.33 | 0.33
0.09
0.06 | 0
0
T | 0
0
T | T
0
0.08 | 0
0
T | 11.40
8.66
8.03 | | SLACK CANYON
SOLEDAD
SOLEDAD CTF
SPRECKELS HIGHWAY BRIDGE
SPRECKELS | 7.58
5.13
5.27
9.43
8.62 | 0
0.02
0
0 | 0 0 0 0 0 0 | 0.18
0.05
0.03
0.21
0.27 | 0.10
0.06
0.20
0.01
0.15 | 1.87
0.43
0.57
1.10
1.16 | 1.01
1.38
1.45
2.05
1.29 | 0.60
0.79
0.70
1.89
2.04 | 1.08
0.42
0.42
0.88
0.80 | 1.91
1.53
1.44
2.58
2.28 | 0.70
0.40
0.39
0.49
0.49 | 0.13
0.05
0.07
0.21
0.14 | 0
0
0
0.01 | 0
T
0
T | 0
T
0
0.05 | 0
0
0.52
0 | 7.40
5.06
5.76
9.27
8.40 | | JPPER SALINAS RIVER D3 | | | | | | | | | | | | | | | | | | | ATASCADERO MAINTENANCE STN
BRADLEY
BRYSON
CHOLAME ALLEY RANCH
LA PANZA RANCH | 12.12

11.20
7.69
6.53 | 0
T
0
0 | 0
0
0
0 | 0.70
0.35
0.39
0.40
0.50 | 0.14
0
0.26
0 | 2.55
1.17
1.55
2.28
1.79 | 1.83
1.25
2.25
0.93
1.44 | 1.86
0.71
1.55
0.80
0.57 | 1.42
0.53
0.90
0.71
0.38 | 2.30
1.00
2.84
1.78
1.14 | 1.32
0.90
1.17
0.72
0.67 | 0
0.18
0.29
0.07
0.04 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 11.42

10.81
7.29
6.03 | | LINN RANCH
LOCKWOOD 2 N
NACIMIENTO DAM
PARKFIELD
PARKFIELD 7 NNW | 8.27
6.67
8.28
11.79 | 0.02
0
0.07
0 | 0
0
0
0 | 0.68
0.28
0.48
1.75
1.05 | 0.13
0
0.07
0
0.16 | 1.84
1.30
1.56
4.10
1.60 | 1.44
1.09
1.71
1.46
0.71 | 0.86
1.04
0.63
1.01
0.55 | 0.67
0.69
0.67
0.55
0.82 | 1.66
1.64
1.82
1.74 | 0.88
0.58
1.22
1.08
0.50 | 0.09
0.05
0.05
0.10
0.23 | 0
0
0
0 | 0 0 0 0 | RE
0
0
0
0 | 0 0 0 | 6.39
7.73
10.04 | | PASO ROBLES PASO ROBLES 5 NW PASO ROBLES FAA AIRPORT SALINAS DAM . SAN ANTONIO MISSION | 8.74

7.35
12.54
11.10 | T
0
0.02
0 | 0 0 0 0 0 | 0.79
1.06
0.28
1.11
0.80 | 0.14
0.07
0.14
0.04
0.18 | 1.74
1.71
1.39
3.14
1.43 | 1.70
1.47
0.97
1.80
1.87 | 1.19
1.15
1.65
1.90 | 0.68
0.60
0.81
1.02
1.65 | 1.76
1.65
1.75
3.20
2.50 | 0.70
0.75
0.82
0.33
0.71 | 0.04
0.11
0.02
0.25
0.06 | 0 0 0 0 | 0 0
0 0 0 | T
0
0
T | 0 0 0 0 0 | 7.95
7.05
11.43
10.30 | Precipitation in Inches Total July 1 to June 30 Total Oct. I to Sept. 30 1967 1968 Stotion Name July Aug. Sept. Oct. Nov. Oec Jon. Feb. Mar. Apr. Moy June July Aug. Sept. CENTRAL COASTAL AREA UPPER SALINAS RIVER D3 SANTA MARGARITA 2 SW 1.21 1.32 4.32 4.33 2.92 3.39 3.31 2.03 4.31 1.48 1.49 0.96 18.77 18.79 10.54 19.98 0 0 0 1.89 20.11 0.20 SANTA MARGARITA BSTR 0 0.20 0 11.16 0.62 0.16 0.12 0.66 VALLETON 0.90 MONTEREY COAST D4 8.30 2.90 3.56 5.63 3.36 3.94 2.45 3.74 3.18 BIG SUR STATE PARK 25.03 0 0.18 0 0.29 1.83 1.25 0.50 0 0 0.21 0 25.06 0.58 1.40 0.75 0.81 11.59 15.67 18.95 12.79 CARMEL VALLEY LUCIA WILLOW SPRINGS 11.60 15.74 0.10 0.20 2.04 2.06 1.97 3.56 0.61 0.57 0.09 0.05 0 0 0.04 0 0 0.35 ROOSEVELT RANCH 0 1.44 3.28 0.50 0.26 12.90 0.13 0.12 0.02 SAN FRANCISCO BAY AREA SAN FRANCISCO BAY EO 2.11 S E FARALLON 11.73 0 0 0.04 0.68 1.26 1.39 2.69 3.14 0.20 0.22 0 0.05 0.04 11.78 COAST-MARIN E-1 28.22 0 0.12 0.86 2.37 3.00 8.48 7.37 0.30 0.63 MUIR WOODS 0 4.66 0 0.17 28.90 MARIN-SONOMA E2 35.18 19.32 7.12 2.43 5.01 3.13 36.15 19.42 19.64 33.72 KENTFIELD 1.07 10.22 0 0 0.97 6.47 7.31 11.83 0.10 0.25 0.31 MILL VALLEY 0 1.33 0.30 0 5.66 0 0 0 0 NOVATO FIRE HOUSE OAKVILLE 4 SW NO. 2 19.39 33.42 0.76 0 0 3.15 3.03 0.20 0.06 0 0.10 5.40 0.68 0 0.09 0.78 0 PETALUMA FIRE STN NO. 2 20.96 0 0 0.03 0.82 0.32 0 0 PETALUMA BURNS 25.86 0.36 26.25 30.56 0.03 0.87 1.84 4.03 9.04 4.69 4.28 0.69 0.39 0 0 0.06 SAN ANSELMO SAN RAFAEL 30.41 28.97 6.25 5.56 0 0 2.21 5.47 5.94 0 0.44 9.77 9.40 7.34 4.06 0.32 0.15 0 0.32 0 29.27 T T O 0.03 2.39 5.77 6.05 3.69 3.95 3.92 0.31 0.27 SAN RAFAEL NO. 1 28.68 0 0.68 0 19.42 0 0.53 0.47 0 19.67 0 TAMALPAIS VALLEY 25.56 0 0.09 0.78 0 0 0.15 26.18 TIBURON TOPHAM 0 0.43 1,20 5.24 7.12 2.99 0.20 0.25 0 0.37 NAPA-SOLANO E3 ANGWIN PUC 30.13 0 0.13 1.16 0.97 0 4.85 10.46 5.50 3.91 0.63 0.72 T 0 0 0.02 30.99 1.00 2.50 2.97 3.50 9.50 ATLAS ROAD 0 0 5.30 CALISTOGA CARNEROS VALLEY 32.66 0.13 4.15 0.58 1.01 0.07 33.54 5.06 0.94 0 0 8.68 4.10 0.20 0 0.33 23.61 23.16 0 0.08 0.70 2.71 4.39 0.53 0 0.20 COLLINSVILLE 11.61 0 0.32 0 0 0 T 0.04 0.42 3.80 5.89 1.01 1.61 1.57 1.75 0 1.13 1.24 2.44 3.40 2.28 2.51 0.35 0.10 0.13 11.53 15.61 DENVERTON 1 S T 0 DUTTONS LANDING 0.09 0 0 0.29 2.51 FAIRFIELD 0 0 0.07 1.24 5.01 2.85 0.25 0 FAIRFIELD FIRE STATION 14.56 15.69 0.29 T 0 0 GREEN VALLEY 18.92 0.05 0.72 2.18 2.00 6.43 3.91 3.04 0.35 0.24 0 0 0.36 0 18.41 LAKE CURRY 0 0 0.55 0.03 1.62 7.40 3.31 2.90 0.10 0.27 0 0 0.33 0 18.71 MARE ISLAND NAVY NAPA STATE HOSPITAL 15.56 0.04 0.89 1.21 2.05 5.64 6.50 2.56 2.55 0.27 0.31 15.52 17.32 0 0 0 0.25 0 4.14 3.85 0 OAKVILLE 1 WNW 3.60 10.30 0.50 0.32 0 0.35 SAINT HELENA 29.24 0 0 0.92 0.55 0.81 29.95 31.17 0.01 0 0 3.46 4.14 SAINT HELENA 4 WSW 1.40 4.70 11.60 0.90 0.80 0.20 32.16 VETERANS HOME 0.29 0.89 5.09 4.42 0.35 1.99 12.17 0 0 0.53 0 29.87 WILD HORSE VALLEY 0.96 2.62 0 0.43 21.80 24.26 21,45 0 0.08 2.03 4.16 3.30 0.58 0.25 YOUNTVILLE GAMBLE 0.42 EAST BAY E4 16.24 18.08 0.71 T O T 0 2.98 2.23 0.40 0.10 16.31 0.19 18.61 18.10 0.02 6.16 3.04 BERKELEY 1.56 3.84 0.44 0.23 0 0 0.55 0 BURTON RANCH CONCORD 3 E 17.99 12.51 0.03 0 0.66 2.67 2.87 0.46 1.01 1.83 0.44 0.05 0 0.02 0 CROCKETT 16,55 0 0 0.04 0.93 1.61 2.00 6.14 0.47 0 0 0.02 16.53 HAYWARD 6 ESE 6.59 7.01 5.39 0.03 0.14 18.87 18.25 15.62 18.73 0 0.58 0 0 1.51 1.89 3.59 1.04 0.79 0 0 LAFAYETTE 2 NNE MARTINEZ 3 S MARTINEZ 3 SSE 18.13 15.39 0.80 1.02 2.67 2.79 1.85 3.23 3.37 0.38 0.01 0 T 0 0.06 0.07 0 0.29 0.04 5.54 5.30 0.55 0.11 0 0 15.06 0.62 1.39 1.82 3.02 0.02 0.01 MARTINEZ FIRE STATION 0.22 0 0 MOUNT DIABLO NORTH GATE OAKLAND 39TH AVENUE 18.84 19.59 0.05 0 0 0.55 1.31 0.68 3.04 3.51 T 0 1.64 6.67 3.02 0.48 0.52 0.33 0 19.89 OAKLAND CITY HALL OAKLAND WB AIRPORT PORT CHICAGO NAD 0.41 1.25 1.78 2.70 2.61 3.07 0.26 0.01 1.46 0.05 0.01 15.78 11.51 0.01 1.82 15.80 0 0.45 0 0.06 0.41 1.08 1.46 4.07 1.57 2.46 0.40 0 0 0 11.45 0 0 0.02 0.38 1.02 5.20 3.21 2.40 3.60 0.46 T T 0 16.58 0.18 0 0.13 SAINT MARYS COLLEGE UPPER SAN LEANDRO FIL 20.06 19.71 13.78 0.04 0.85 1.74 3.27 3.79 1.51 6.92 6.61 5.84 3.19 2.81 3.28 3.61 2.68 0.45 0.44 0.43 0.32 0.30 0.25 20.32 19.97 13.93 0 0.03 T 0 0 WALMAR SCHOOL 0 0 0 1.15 2.03 0.14 0.15 WALNUT CREEK 2 ESE 13.61 0 0.04 0.65 5.43 | Station Name | Total
July I | | | 15 | 967 | | | | | | | 1968 | | | | | Total
Oct. 1 | |--|---|---------------------|---------------------|-----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------|--------------------------------|--------------------------------------|-----------------------------------|---| | Stollon Nome | June 30 | July | Aug | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mor. | Apr. | May | June | July | Aug. | Sept. | Sept 30 | | SAN FRANCISCO BAY AREA | | | | | | | | | | | | | | | | | | | EAST BAY E4 | | | | | | | | | | | | | | | | | | | WALNUT CREEK 2 ENE
WALNUT CREEK 4 E | 12.43
12.26 | 0
T | 0
T | 0.03 | 0.52 | 0.91 | 1.80 | 5.26
5.04 | 1.70 | 1.80 | 0.31 | 0.10 | 0 | OT | 0.02 | 0 | 12.42 | | ALAMEDA CREEK E5 | | | | | | | | | | | | | | | | | | | CALAVERAS RESERVOIR GERBER RANCH LIVERMORE COUNTY FD LIVERMORE SEWAGE PLANT LIVERMORE 2 SSW | 17.68
11.26
10.57
10.62 | 0 0 0 0 | 0
T
0
0 | 0
T
0.02
0.03
0.02 | 0.36
0.20
0.24
0.07
0.24 | 1.31
1.15
0.88
1.13
RE | 3.92
2.13
1.62
1.16 | 5.63
3.00
3.93
4.18 | 1.52
1.46
0.90
0.91 | 3.53
2.17
2.40
2.45 | 0.58
0.53
0.43
0.58 | 0.81
0.62
0.15
0.11 | 0.02
0
0
0 | 0 0 0 0 | 0.38
0.04
T
0.05 | 0
0
T
0 | 18.06
11.30
10.55
10.64 | | MOUNT HAMILTON
NILES FINNA
NEWARK
PLEASANTON NURSERY | 10.86
15.34 | 0 0 0 | 0

0
0 | 0
T
T
0.02 | 0.63
0.43
0.22
0.28 | 1.15
1.09
1.02
1.26 | 3.22
2.18
2.43 | 4.10
4.51
3.77
5.71 | 1.00
1.03
0.56
1.16 | 2.75
3.52
2.17
3.39 | 0.40
0.98
0.76
0.87 | 0.51
0.43
0.18
0.22 | 0
0
0 | 0 0 0 0 | 0.33
2.35
0.72
0.02 | 0
0
0 | 11.58
15.34 | | SANTA CLARA VALLEY E6 | | | | | | | | | | | | | | | | | | | ALAMITOS PERCOLATION POND
ALMADEN RESERVOIR
BLACK MOUNTAIN 2 SW
CALERO RESERVOIR
CAMBRIAN PARK | 13.66
24.48
26.67
16.22
15.34 | 0 0 0 0 | 0
0
0
0 | T
T
T
0.01 | 0.10
T
0.63
0.20
0.13 | 1.59
2.02
1.94
1.78
1.29 | 1.68
3.41
5.34
2.05
2.73 | 5.87
10.10
8.58
6.55
6.43 | 0.97
1.94
3.06
1.07
1.18 | 2.44
4.87
4.83
3.09
2.67 | 0.83
1.01
1.18
0.92
0.56 | 0.18
1.13
1.05
0.55
0.30 | 0
0
0.06
0 | 0 0 0 0 0 | 0.06
0.47
0.55
0.04
0.05 | 0
0
0.08
0 | 13.72
24.95
27.30
16.25
15.39 | | CAMPBELL WATER COMPANY
COYOTE RESERVOIR
GILROY 8 NE
GUADALUPE RESERVOIR
LAKE ELSMAN | 14.51
14.00
12.49
24.70 | 0 0 0 | T
0
0 | T
0
0
0.01 | 0.09
0.40
0.47
0.22 | 1.24
1.60
1.82
2.35 | 1.86
2.98
2.45
2.69 | 7.01
3.21
2.69
11.34 | 0.95
1.28
1.68
1.94 | 2.51
3.28
2.35
4.32 | 0.70
1.20
0.79
0.99 | 0.15
0.05
0.24
0.84 | 0
T
0
0 | 0
0
0
0
RB | 0.04
0.05
0.18
0.05
0.14 | 0
0.01
0
0 | 14.55
14.06
12.67
24.74 | | LEROY ANDERSON DAM LEXINGTON RESERVOIR LOS GATOS LOS GATOS WRIGHT MORGAN HILL 2 E | 13.54
29.80
19.33
37.30 | 0
0
0
0 | 0
0
T
T | 0
0.02
0
0
T | 0.20
0.36
0.16
0.52
0.22 | 1.42
2.62
1.65
2.46 | 2.24
4.55
2.66
5.93
2.27 | 4.46
11.89
9.03
15.46
3.93 | 1.32
3.25
1.37
4.74
1.23 | 3.11
5.01
3.37
6.04
3.21 | 0.67
1.20
0.67
1.20
0.70 | 0.12
0.90
0.42
0.95
0.15 | T
0
0
0 | 0
0
0
RE
0 | 0.78
0.16
0.07 | 0 0 0 | 14.32
29.94
19.40 | | MORGAN HILL 6 WNW NEWARK PALO ALTO CITY HALL PENITENCIA RAIN GAGE REDWOOD CITY | 10.86
11.81
13.93
15.58 | 0
0
0
0 | 0
0
T
0 | 0
T
0.02
0.02 | 0.22
0.22
0.22
0.14
0.25 | 1.02
1.11
1.38
1.33 | 1.20
2.18
2.03
2.80
2.86 | 6.99
3.77
3.91
5.03
5.44 | 2.04
0.56
0.46
0.91
1.42 | 3.43
2.17
3.00
2.89
3.43 | 0.76
0.96
0.76
0.78 | 0.18
0.10
0
0.07 | 0
0
0
0 | 0
0
T
0 | 0.72
0.04
0.26
0.11 | 0
0
0
0 | 11.58
11.83
14.17
15.69 | | SAN JOSE
SAN JOSE DECIDUOUS FFS
SANTA CLARA UNIVERSITY
SARATOGA CLARK
SARATOGA GAP MAINT STN | 13.14
13.22
14.38
17.74
31.99 | 0 0 0 0 0 | 0
0
0
0 | 0.02
0.01
0
T | 0.19
0.15
0.35
0.11
0.76 | 1.27
1.10
1.34
1.00
1.60 | 2.15
2.12
2.83
2.68
6.16 | 5.37
5.91
5.73
8.48
11.49 | 0.77
0.76
0.74
1.35
4.27 | 2.62
2.48
2.64
2.84
5.53 | 0.57
0.61
0.60
0.89
1.30 | 0.18
0.08
0.15
0.39
0.88 | T
0
0
0 | T 0 0 0 0 0 0 | 1.96
0.22
0.66
0.13
0.38 | 0
0
0
0 | 15.08
13.43
15.04
17.87
32.37 | | SARATOGA KRIEGE
SEARSVILLE LAKE
STEVENS CREEK RESERVOIR
VASONA RESERVOIR
WRIGHTS | 19.61
21.05
22.72
17.45
35.51 | 0
0
0
0 | 0
0
0
0 | T
0
T
0.11 | 0.08
0.35
0.32
0.34
0.59
| 0.97
1.80
1.44
1.40
3.50 | 3.18
4.46
3.87
2.76
4.67 | 9.63
6.50
9.49
7.43
13.10 | 1.46
1.89
2.09
1.75
4.56 | 3.11
4.38
3.31
2.50
6.48 | 0.78
1.25
1.38
0.74
1.28 | 0.40
0.42
0.82
0.42
1.33 | 0
0
0
0 | 0
T
0
0 | 0.09
0.36
0.34
0.12
0.33 | 0
0
0
0 | 19.70
21.41
23.06
17.46
35.84 | | AYSIDE-SAN MATEO E7 | | | | | | | | | | | | | | | | | | | BURLINGAME
SAN FRANCISCO WB AIRPORT
SAN FRANCISCO FOB
SAN MATEO | 16.75
15.83
14.46
13.93 | 0
T
0 | 0
T
T
0 | 0.02
0.01
0.04
T | 0.31
0.48
0.53
0.21 | 1.36
1.29
1.10
1.35 | 3.28
3.50
2.12
2.18 | 5.37
5.25
4.54
5.68 | 1.70
1.44
2.28
1.04 | 3.43
3.03
3.15
2.80 | 0.90
0.55
0.48
0.49 | 0.38
0.28
0.22
0.18 | O
T
T | 0
T
T | 0.07
0.06
0.03
0.07 | 0
T
0.06 | 16.80
15.88
14.51
14.00 | | OAST-SAN MATEO E8 | | | | | | | | | | | | | | | | | | | HALF MOON BAY LA HONDA PORTOLA STATE PARK SAN FRANCISCO SUNSET SAN GREGORIO 2 SE | 21.22
24.31
34.14
15.48
23.79 | 0
0
0
0 | 0
0
T
0 | T
0.17
T
0.05
0.08 | 0.76
0.70
0.74
0.68
0.92 | 2.13
2.03
2.49
1.02
2.11 | 2.89
4.25
7.21
2.11
4.09 | 6.19
7.46
10.99
5.02
6.43 | 2.62
2.48
4.07
2.77
2.77 | 5.78
4.88
5.98
3.41
5.03 | 0.61
1.41
1.63
0.26
1.36 | 0.24
0.86
1.01
0.16
0.80 | T
0.07
0.02
T
0.12 | 0
T
0.03
0.01
0.15 | 0.28
0.63
0.43
0.10
0.42 | 0
0
0.13
0.05
0.28 | 21.50
24.77
34.73
15.59
24.48 | | ORTH COASTAL AREA | | | | | | | | | | | | | | | | | | | ENDOCINO COAST F8 | | | | | | | | | | | | | | | | | | | BOONVILLE HMS BOONVILLE FARRER CLOVERDALE 11 W FORT BRACG FORT BRACG AVIATION | 33.53

33.19
30.08 | 0
0
0
0.06 | T
0
0
0.02 | 0.02
T

0.45
T | 2.12
RE

3.60
2.83 | 3.91

3.90
4.03 | 6.56

6.51
4.44 | 9.98

8.05
7.48 | 4.73

4.33
4.70 | 5.05

4.43
3.85 | 0.57
0.97
0.56
1.39 | 0.59
0.95
1.19
1.27 | 0
0
0.09
0.09 | 0 0 0.05 0.05 | 1.25

1.34
1.02 | 0.14 | 34.90

34.48
31.54 | | FORT ROSS NAVARRO 1 NW PHILO 2 NW PHILO 4 NW POINT ARENA | 30.96
31.76
32.94
34.15
31.39 | T 0 0 0 T | 0
0
0
0 | 0.07
0.10
0
0.23
0.19 | 1.37
2.74
2.45
2.38
1.95 | 4.52
4.00
4.07
4.10
4.20 | 3.98
4.42
4.93
5.11
4.53 | 8.11
9.77
10.61
10.62
8.37 | 7.55
4.31
4.53
4.39
5.11 | 4.09
5.32
4.76
5.50
5.42 | 0.40
0
0.81
0.72
0.55 | 0.85
1.10
0.78
1.10
1.00 | 0.02
0
T
0 | 0
0
0
0
0 | 0.98
0.97
1.19
1.42
1.07 | 0.35
0
0.14
0.21
0.23 | 32.22
32.63
34.27
35.55
32.47 | | SKAGGS SPRING LAS LOMAS
YORKVILLE | | 0 0 | 0 0 | 0.10 | 2.64 | 5.20 | 8.67
7.80 | | 9.22 | 7.07 | 1.05 | 1.26 | 0 0 | 0 0 | 2.00 | 0.20 | | PRECIPITATION DATA Precipitation in Inches Total Oct. 1 to Sept. 30 Total July 1 10 June 30 1967 1968 Station Nome Feb. Mar. Apr. May Aug. Sept. July Aua Sept. Oct. Nov. Dec. June July Jan. NORTH COASTAL AREA RUSSIAN RIVER F9 ALPINE DAM BLAKES LANDING BON TEMPA DAM 3.34 2.79 4.41 7.26 3.64 35.02 0 0.95 1.43 0.75 4.50 3.86 2.68 9.45 5.50 5.69 5.94 3.95 4.64 0 0 36.34 9.20 0.60 1.04 0 1.32 0 0 0.40 0.75 1.56 5.85 0.50 0.20 0.10 0 28.37 29.12 16.91 12.12 0.35 T 54.26 37.46 1.01 1.75 56.15 38.59 0 0.02 8.18 0 CAZADERO 2.92 12.05 0.32 CLOVERDALE 3 SSE 0.01 COYOTE DAM GEYSERVILLE HOCKING 0 3.35 3.56 2.97 3.54 4.98 5.63 6.05 5.81 9.18 11.40 5.10 5.14 6.57 6.63 4.05 6.15 4.02 1.65 2.20 29.87 0.03 0.03 1.98 0.40 0.77 0 0.14 31.60 0 0 0 0 0.15 0.10 1.21 0 0.98 32.98 10.66 GRATON 1 W 0.05 0.47 0.83 0.04 33.80 RE 0 0 2.27 1.30 0.03 GUERNEVILLE 0 0 1.34 2.90 5.24 0 --12.76 8.21 5.64 --5.89 10.96 0.23 0 0 1.44 0.86 0.03 35.50 3.06 3.15 3.15 4.43 HEALDSBURG NO. 2 HOPLAND LARGO STATION INVERNESS MERY 0.04 1.09 1.73 5.83 5.05 10.20 6.44 1.19 32.95 0 0 4.82 0.28 0 0 0.65 0.03 33.59 5.05 5.02 8.76 12.95 4.35 6.16 0.60 RE KELLOGG 40.04 0.22 T 0 1.08 41.07 KENT LAKE KNIGHTS VALLEY LAGUNITAS LAKE MOUNT TAMALPAIS 2 SW NICASIO 8.33 7.89 5.85 3.54 3.60 0.05 0.12 0 1.31 2.39 2.63 3.34 3.25 11.57 11.40 9.08 4.59 7.30 4.13 0.54 0.07 0.23 41.48 0 0 0 0 1.15 42.65 0 36.87 6.12 4.94 5.17 0.75 37.62 32.52 24.38 0.73 0.80 11.37 8.11 0 0.64 0 31.31 23.97 0.09 1.25 1.38 8.38 7.**5**8 0 0 0 0 0.36 0 0.40 0.06 NOVATO 8 WNW 0.70 2.45 1.39 4.74 4.15 3.60 0.86 0 0 42.47 39.72 29.10 39.23 11.76 12.64 8.04 10.38 1.04 0.67 0.13 0.23 0.99 0.65 1.53 2.37 OCCIDENTAL PHOENIX LAKE DAM POTTER VALLEY 3 SE 0.12 1.98 1.04 4.14 3.20 6.28 6.21 4.52 9.24 5.72 0.19 41.41 0 0 0 0 0 0 39.06 27.57 0.13 0.13 1.77 0 3.13 4.98 3.90 0.97 POTTER VALLEY POWERHOUSE 0 3.08 2.37 2.68 5.23 5.22 4.82 3.15 3.69 1.37 0.57 1.68 REDWOOD VALLEY 0 0 0.03 1.86 3.99 8.35 0.38 0 0 0.12 SANTA ROSA SEWAGE PLANT SANTA ROSA 24.03 0 6.84 7.63 8.40 18.87 0.02 0.57 4.38 0.22 24.56 0.68 25.01 4.01 3.30 6.15 4.20 3.70 0.48 26.64 24.90 0 0.07 0.86 0.26 0 0 0 0.02 0.90 6.40 3.57 SEBASTOPOL 4 SSE 0 0 0 THE GEYSERS 0.03 0.05 4.80 5.54 1.45 1.62 4.15 5.32 5.40 3.26 UKIAH 0.03 0.01 2.09 5.90 7.69 9.58 1.07 1.33 0.70 34.33 43.60 4.04 0.48 0 1.35 0.07 UKIAH 4 WSW 0.06 2.63 2.30 11.48 18.20 6.35 8.80 5.74 0.45 0.01 2.40 2.50 0.20 41.09 0.03 0 0 T 33.12 WOODACRE 0.06 33.75 6.04 1.00 10.58 5.82 0.38 0.03 #### TABLE A-3 #### TEMPERATURE DATA The definition of terms and the abbreviations used in connection with Table A-3 are as follows: MAXIMUM The highest temperature of record for the month. MINIMUM The lowest temperature of record for the month. AVG MAX The arithmetic average of daily maximum temperatures for the month. AVG MIN The arithmetic average of daily minimum temperatures for the month. AVERAGE The arithmetic average of the daily maximum and minimum temperatures for the month. - Record incomplete. RB Record began. RE Record ended. # TABLE A·3 (Cont.) TEMPERATURE DATA Temperature in Degrees Fahrenheit | Station Name | | | | 19 | 67 | | | | | | | 1968 | | | | | |-----------------------------|---|------------------------------------|------------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| | | | July | Aug | Sept | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | | CENTRAL COASTAL AREA | | | | | | | | | | | | | | | | | | SANTA CRUZ COAST DO | | | | | | | | | | | | | | | | | | BEN LOMOND NO. 3 | MAXIMUM
MINIMUM | | | 100 | 95
39 | 92
33 | 75
28 | 79
25 | 79
28 | 85
32 | 89
31 | 94
34 | 100 | 99
43 | 101 | 102 | | | AVG MAX
AVG MIN
AVERAGE | | RB | 85.7
52.0
68.9 | 82.3
46.7
64.5 | 68.2
44.3
56.3 | 58.8
36.8
47.8 | 59.4
34.8
47.1 | 64.0
44.5
54.3 | 67.0
40.0
53.5 | 74.0
39.9
57.0 | 74.1
43.9
59.0 | 82.8
48.9
65.9 | 84.8
50.2
67.5 | 83.5
50.9
67.2 | 84.
50.
67. | | DAVENPORT | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 75
47
62.8
50.0
56.4 | 69
47
61.7
50.6
56.2 | 80
50
68.6
54.4
61.5 | 89
47
70.3
52.1
61.2 | 77
44
65.1
50.4
57.6 | 70
30
 | 74
37
57.8
43.9
50.9 | 71
43
60.2
48.9
54.6 | 70
40
60.2
46.7
53.5 | 72
39
58.7
44.8
51.8 | 73
40
59.3
46.0
52.7 | 75
44
62.7
49.5
56.3 | 75
48
62.8
50.5
56.7 | 90
43
67.2
52.4
59.8 | 79
43
68.
50. | | SANTA CRUZ | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 88
44
76.1
51.1
63.6 | 86
47
73.5
52.2
62.9 | 93
47
79.2
53.4
66.3 | 96
40
80.1
45.3
62.7 | 85
36
69.1
44.3
56.7 | 74
28
58.6
35.9
47.3 | 78
26
60.6
36.5
48.6 | 77
37
64.3
46.3
55.3 | 83
34
66.1
42.3
54.2 | 85
32
70.5
41.4
56.0 | 89
35
71.4
43.7
57.6 | 88
38
75.2
48.3
61.8 | 90
44
75.4
50.0
62.7 | 99
42
77.9
50.1
64.0 | 96
38
78.
48.
63. | | PAJARO-SAN BENITO RIVERS D1 | | | | | | | | | | | | | | | | | | GILROY | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 103
49
91.0
52.7
71.9 | 103
50
90.2
53.0
71.6 | 100
50
86.9
54.7
70.8 | 94
30
81.3
44.5
62.9 | 86
32
70.4
43.2
56.8 | 74
25
57.5
31.5
44.5 | 74
24
58.3
32.8
45.6 | 78
33
64.3
45.6
55.0 | 86
33
68.7
41.1 | 91
34
73.1
41.8
57.5 | 91
37
75.4
45.1
60.3 | 98
42
83.8
51.7
67.8 | 100
49
87.7
53.1
70.4 | 102
49
84.8
53.8
69.3 | 98
41
84.
51. | | QUIEN SABE HAY CAMP | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 99
41
90.6
50.7
70.6 | 100
43
92.5
51.4
72.0 | 95
44
84.8
49.8
67.3 | 90
33
80.0
39.1
59.6 | 84
26
70.2
37.7
54.0 | 77
13
58.1
27.9
43.0 | 78
16
61.6
28.5
45.1 | 80
29
65.9
42.3
54.1 | 84
24
66.7
34.8
50.8 | 86
22
72.4
33.1
52.8 | 90
26
74.7
38.8
56.8 | 95
29
89.7
44.0
66.9 | 100
42
89.2
50.2
69.7 |
97
38
82.8
48.5
65.7 | 96
32
83.
44. | | WATSONVILLE WATERWORKS | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 81
42
71.2
51.8
61.5 | 79
50
69.4
53.4
61.4 | 93
48
75.1
54.4
64.8 | 95
41
76.8
46.9
61.9 | 89
35
69.5
45.4
57.5 | 74
26
58.9
36.0
47.5 | 77
28
60.1
36.3
48.2 | 77
37
63.6
47.2
55.4 | 83
36
66.4
42.9
54.7 | 85
35
66.6
43.7
55.2 | 85
37
66.6
46.7
56.7 | 83
42
69.8
50.8
60.3 | 82
48
70.4
51.7
61.1 | 98
43
72.1
53.2
62.7 | 93
42
73.
51.
62. | | LOWER SALINAS RIVER D2 | | | | | | | | | | | | | | | | | | FREMONT PEAK | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 102
58
92.1
66.0
79.0 | 103
60
94.2
69.1
81.6 | 94
43
82.0
57.7
69.8 | 90
42
77.5
52.4
65.0 | 83
30
65.3
46.1
55.7 | 74
16
52.5
34.6
43.6 | 76
24
56.5
36.4
46.5 | 76
37
60.9
44.6
52.8 | 80
33
68.6
40.6
54.6 | 84
30
66.6
42.4
54.5 | 83
35
67.2
44.4
55.8 | 90
40
78.2
53.3
65.8 | 101
44
85.1
61.8
73.5 | 98
39
78.2
55.5
66.9 | 94
40
81.
51 | | KING CITY | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 101
44
87.7
51.5
69.6 | 98
46
85.5
52.2
68.9 | 100
47
85.5
53.3
69.4 | 94
38
84.2
44.1
64.2 | 88
29
72.2
42.9
57.6 | 74
17
59.9
30.6
45.3 | 80
22
64.5
32.8
48.7 | 84
36
69.6
45.4
57.5 | 90
32
72.7
39.7
56.2 | 92
31
76.7
40.8
58.8 | 91
34
77.7
44.4
61.1 | 99
40
84.2
50.3
67.3 | 101
45
85.1
52.2
68.7 | | 100
37
84.4
47.6
66.3 | | MONTEREY | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 80
48
67.2
51.8
59.5 | 78
51
68.3
52.5
60.4 | 92
51
73.1
55.4
64.3 | 92
48
74.9
53.3
64.1 | 87
42
67.0
49.8
58.4 | 74
27
58.7
41.6 | 77
33
59.5
42.5
51.0 | 75
40
63.0
48.9
56.0 | 80
41
63.6
46.5
55.1 | 82
40
63.2
45.8
54.5 | 74
41
62.8
47.5
55.2 | 81
43
66.3
50.0
58.2 | 80
46
66.4
51.6
59.0 | 95
51
70.5
53.8
62.2 | 90
46
72.6
53.3 | | PINNACLES NATL MONUMENT | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 108
43
100.4
53.3
76.9 | 110
46
102.5
54.7
78.6 | 102
48
93.2
52.0
72.6 | 96
38
86.9
43.9
65.4 | 94
29
73.8
41.3
57.6 | 76
19
59.7
32.1
45.9 | 81
20
63.3
31.3
47.3 | 83
31
67.4
41.6
54.5 | 87
30
69.8
37.3
53.6 | 91
30
76.0
37.6
56.8 | 95
34
79.8
41.7
60.8 | 103
38
92.3
48.8
70.6 | 105
43
97.9
52.0
75.0 | 106
42
92.3
49.5
70.9 | 102
38
92.
47.8 | | PRIEST VALLEY | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 105
41
97.6
50.0
73.8 | 106
40
99.5
51.2
75.4 | 97
42
90.2
46.9
68.6 | 90
28
82.2
34.2
58.2 | 84
25
68.0
36.1
52.1 | 71
13
54.3
27.3
40.8 | 76
16
58.1
26.1
42.1 | 77
28
62.7
39.0
50.9 | 81
25
64.0
32.7
48.4 | 86
22
72.0
32.8
52.4 | 94
25
77.7
37.6
57.7 | 102
35
90.9
46.1
68.5 | 103
41
95.3
50.7
73.0 | 102
33
89.1
45.5
67.3 | 99
30
89.0
42.3 | | SALINAS 2 E | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 84
45
72.7
52.4
62.6 | 80
49
72.1
53.3
62.7 | 96
50
77.2
55.3
66.3 | 98
42
80.4
48.2
64.3 | 90
35
70.2
45.8
58.0 | 78
24
60.8
35.7
48.3 | 80
27
62.6
37.2
49.9 | 80
36
66.4
47.5
57.0 | 86
34
67.5
42.8
55.2 | 88
32
68.4
42.5
55.5 | 80
39
68.7
47.5
58.1 | 84
42
71.6
50.2
60.9 | 83
49
71.4
52.5
62.0 | 102
47

53.4 | 94
40
76.0
51.4 | | SALINAS FAA AIRPORT | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 83
44
71.1
51.4
61.3 | 77
49
70.2
52.4
61.3 | 95
50
75.3
54.6
65.0 | 96
40
78.3
47.9
63.1 | 90
34
68.7
45.6
57.2 | 76
30
60.7
38.9
49.8 | 80
30
64.4
39.2
51.8 | 76
39
63.1
47.1
55.1 | 83
34
64.1
42.4
53.3 | 86
33
65.4
42.7
54.1 | 78
38
65.3
47.1
56.2 | 83
41
68.6
50.8
59.7 | 81
49
69.0
52.6
60.8 | 98
47
73.3
53.8
63.6 | 93
40
74.1
52.0
63.1 | | SOLEDAD CTF | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 104
49
83.9
57.1
70.5 | 86
45
75.7
51.9
63.8 | 96
48
79.2
53.8
66.5 | 93
39
79.0
45.8
62.4 | 90
34
71.2
44.3
57.8 | 73
21
58.6
34.4
46.5 | 79
25
61.7
35.8
48.8 | 80
35
65.6
46.6
56.1 | 87
34
68:3
41.1
54.7 | 88
35
69.8
40.4
55.1 | 84
35
70.4
45.4
57.9 | 88
42
74.9
49.5
62.2 | | 97
42
76.3
50.9
63.6 | 94
39
77.4
49.3 | # TABLE A·3 (Cont.) TEMPERATURE DATA | | July | Aug | Sept | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | |---|---|---|--
--|---|---|---|---|---
--|---|--|---|---|--| MAXIMUM | 90 | 79 | 96 | 96 | 90 | 77 | 82 | 80 | 86 | 90 | 85 | 82 | 85 | 100 | 95 | | AVG MAX
AVG MIN
AVERAGE | 74.5
51.3
62.9 | | 80.9
53.0
67.0 | 81.2
44.7
63.0 | 72.4
43.4
57.9 | 58.7
31.7
45.2 | 64.0
32.4
48.2 | 67.8
46.0
56.9 | 71.0
44.0
57.5 | 70.3
43.5
56.9 | 70.6
44.7
57.7 | 72.5
50.8
61.7 | 74.3
51.9
63.1 | 76.7
52.6
64.7 | 30
81.6
46.6
63.5 | | | | | | | | | | | | | | | | | | | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 106
51
97.5
58.3
77.9 | 107
51
97.6
57.5
77.6 | 98
50
89.8
55.6
72.7 | 94
38
83.4
44.0
63.7 | 92
30
72.2
42.5
57.4 | 72
20
58.7
29.0
43.8 | 76
20
62.0
29.6
45.8 | 79
34
66.0
43.6
54.8 | 78
32
67.4
39.7
53.6 | 90
32
75.3
38.8
57.1 | 96
33
78.9
43.1
61.0 | 98
42
85.8
51.4
68.6 | 103
44
94.5
54.8
74.7 | 100
40
87.7
51.5
69.6 | | | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 104
52
94.9
57.2
76.0 | 103
53
95.9
57.5
76.7 | 94
46
87.3
56.0
71.6 | 90
39
80.9
46.8
63.9 | 83
30
67.1
43.8
55.5 | 67
22
55.3
31.3
43.3 | 74
21
58.5
31.4
45.0 | 76
32
64.0
45.1
54.6 | 84
31
67.4
38.3
52.9 | 89
32
73.0
41.0
57.0 | 95
31
77.9
46.5
62.2 | 102
44
88.1
54.9
71.5 | 102
48
92.9
56.1
74.5 | RE | | | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 109
44
99.1
55.2
77.2 | 108
50
101.3
56.3
78.8 | 98
50
91.8
56.1
74.0 | 94
40
85.5
48.9
67.2 | 89
35
73.1
45.4
59.3 | 72
18
58.9
32.0
45.5 | 74
24
61.0
33.2
47.1 | 80
35
66.2
45.0
55.6 | 87
33
69.9
39.8
54.9 | 93
33
75.8
41.3
58.6 | 98
35
81.5
43.2
62.4 | 102
42
91.5
48.8
70.2 | 105
46
96.7
51.3
74.0 | 103
45
92.4
51.0
71.7 | 105
40
92.9
49.1
71.1 | | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 106
47
97.0
52.3
74.7 | 106
45
98.5
51.4
75.0 | 99
45
91.5
51.6
71.6 | 95
29
85.3
40.0
62.7 | 89
26
71.5
40.1
55.8 | 73
15
59.3
27.9
43.6 | 78
17
63.1
28.5
45.8 | 79
32
67.6
44.1
55.9 | 87
30
70.0
36.8
53.4 | 91
26
76.3
37.0
56.7 | 98
30
80.5
41.2
60.9 | 104
38
88.9
46.8
67.9 | 104
43
93.3
50.8
72.1 | 100
37
89.8
48.0
68.9 | 102
33
89.8
45.6
67.1 | | MAXIMUM
MINIMUM
AVG MAX
AVG MIN | 110
51
99.3
56.7 | 110
50
100.7
56.3 | 101
50
91.0
55.7 | 94
36
84.9
43.6 | 89
30
70.3
42.5 | 73
17
58.8
29.5 | 78
20
61.5
30.8 | 79
33
66.3
44.3 | 88
31
69.4
38.5 | 92
31
76.3
40.5 | 99
35
81.4
45.1 | 105
43
91.0
51.5 | 107
47
95.9
55.2 | 104
40
90.4
52.4 | 104
38
90.0
49.8 | | MAXIMUM
MINIMUM
AVG MAX
AVG MIN | 109
45
103.7
54.4 | 112
45
104.7
53.9 | 101
46
95.2
51.8 | 95
36
88.2
42.1 | 94
27
73.7
39.0 | 76
15
61.0
28.3 | 78
19
63.7
29.8 | 80
30
67.4
40.2 | 85
28
69.9
35.2 | 91
26
77.5
34.8 | 100
28
83.1
38.9 | 103
38
95.6
45.8 | 111
42
101.1
51.0 | 105
34
94.5
44.9 | 105
32
93.4
42.5
68.3 | | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 107
49
95.5
55.8
75.6 | 108
42
96.2
54.5
75.4 | 100
48
89.3
55.0
72.2 | 99
37
84.8
43.5
64.2 | 88
30
65.6
43.5
54.6 | 72
18
58.8
31.7
45.3 | 76
21
61.0
32.9
47.0 | 78
35
65.3
46.3
55.8 | 83
32
68.4
39.4
53.9 | 90
31
72.5
38.7
55.6 | 96
32
77.4
44.4
60.9 | 104
40
86.8
49.0 | 103
42
91.7
53.3
72.5 | 99
37
87.9
49.6
68.8 | 101
36
86.6
46.4 | | | | | | | | | | | - | | | | | | | | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 97
41
78.5
49.4
64.0 | 99
42
79.3
49.8
64.7 | 99
46
82.6
52.7
67.7 | 97
42
82.8
48.5
65.7 | 96
36
70.8
45.7
58.3 | 78
23
62.0
36.3
49.2 | 80
28
62.6
37.5
50.1 | 80
34
66.7
46.1
56.4 | 85
35
66.9
40.9
53.9 | 85
32
68.7
41.0
54.9 | 83
34
69.5
43.7
56.6 | 90
35
76.1
47.2
61.7 | 89
40
76.3
48.3
62.3 | 99
41
79.0
49.2
64.1 | 102
40
80.5
49.6
64.8 | | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 91
52
77.3
61.9
69.6 | 87
51
71.1
57.2
64.2 | 87
53
70.1
56.5
63.3 | 86
54
75.4
63.2
69.3 | 82
49
67.8
56.3
62.1 | 71
37
58.2
48.0
53.1 | 75
40
59.1
48.2
53.7 | 72
47
60.7
52.8
56.8 | 77
45
63.3
51.6
57.5 | 86
44
65.6
51.7
58.7 | 85
45
66.3
53.1
59.7 | 88
50
71.9
60.2
66.1 | 86
52
72.0
58.0
65.0 | 88
54
70.5
58.8
64.7 | 88
53
72.5
60.6
66.3 | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 98
46
82.9
51.2
67.1 | 92
47
84.1
51.0
67.6 | 97
48
84.1
53.5
68.8 | 89
44
79.3
49.3
64.3 | 86
36
67.9
46.4
57.2 | 76
28
56.8
36.4
46.6 | 72
28
54.6
36.5
45.6 | 73
36
61.2
46.3
53.8 | 81
37
66.5
43.2
54.9 | 85
39
71.5
43.1
57.3 | 87
37
71.6
46.0
58.8 | 99
44
81.4
50.6
66.0 | 99
46
83.3
51.2
67.3 | 100
47
 | 97
45
82.3
53.4
67.8 | | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 98
46
83.9
51.1
67.5 | 47 | 100
49
83.8
54.0
68.9 | 91
40
80.1
46.7
63.4 | 89
30
68.8
43.9
56.4 | 81
25
58.6
34.8
46.7 | 70
23
55.1
34.6
44.9 | 75
31
63.3
46.2
54.8 | 84
32
65.9
42.6
54.3 | 89
35
71.2
41.9
56.6 | 83
36
71.2
45.9
58.6 | 93
45
80.1
50.7
65.4 | 98
42
83.5
51.1
67.3 | 105
49
80.8
54.3
67.6 | 100
45
81.8
52.1
67.3 | | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 95
51
84.0
53.8
68.9 | 91
50
83.8
53.9
68.9 | 97
52
83.8
56.9
70.4 | 90
48
81.0
53.6
67.3 | 86
41
69.5
49.9
59.7 | 79
33
59.7
40.6
50.2 | 75
32
59.2
39.5
49.4 | 75
39
65.2
48.4
56.8 | 82
43
68.9
46.7
57.8 | 87
41
74.5
46.7
60.6 | 83
41
72.3
49.5
60.9 | 97
49
82.0
53.5
67.8 | 98
49
83.0
53.8
68.4 | 100
51
82.0
56.4
69.2 | 97
48
82.4
57.3
69.8 | | | MINIMUM AVG MAX AVG MIN AVERAGE MAXIMUM | MAXIMUM 90 MINIMUM 44 AVG MAX 74.5 AVG MIN 51.3 AVERAGE 62.9 MAXIMUM 106 MINIMUM 51 AVG MAX 97.5 AVG MIN 58.3 AVERAGE 77.9 MAXIMUM 104 MINIMUM 52 AVG MAX 94.9 AVG MIN 65.2 AVG MIN 65.2 AVERAGE 77.2 MAXIMUM 106 MINIMUM 47 AVG MAX 99.1 AVG MIN 55.2 AVERAGE 77.2 MAXIMUM 106 MINIMUM 47 AVG MAX 97.0 AVG MIN 52.3 AVERAGE 74.7 MAXIMUM 10 MINIMUM 47 AVG MAX 97.0 AVG MIN 52.3 AVERAGE 74.7 MAXIMUM 10 MINIMUM 47 AVG MAX 99.3 AVG MIN 56.7 AVERAGE 78.0 MAXIMUM 109 MINIMUM 45 AVG MAX AVG MIN 65.7 AVERAGE 78.0 MAXIMUM 107 MINIMUM 45 AVG MAX AVG MIN 65.8 AVERAGE 75.6 MAXIMUM 97 MINIMUM 49 AVG MAX AVG MIN 64.4 AVERAGE 75.6 MAXIMUM 97 MINIMUM 49 AVG MAX AVG MIN 64.4 AVERAGE 64.0 MAXIMUM 97 MINIMUM 49 AVG MAX AVG MIN 68 AVERAGE 67.1 MAXIMUM 97 MINIMUM 47 AVG MAX AVG MIN 68 AVERAGE 67.1 MAXIMUM 91 MINIMUM 68 AVERAGE 67.1 MAXIMUM 91 AVERAGE 67.5 MAXIMUM 91 AVERAGE 67.5 | MAXIMUM 90 79 MINIMUM 44 48 AVG MAX 74.5 AVG MIN 51.3 AVERAGE 62.9 MAXIMUM 106
107 MINIMUM 51 51 AVG MAX 97.5 97.6 AVG MIN 58.3 57.5 AVERAGE 77.9 77.6 MAXIMUM 104 103 MINIMUM 52 53 AVG MAX 94.9 95.9 AVG MIN 57.2 57.5 AVERAGE 76.0 76.7 MAXIMUM 109 108 MINIMUM 44 50 AVG MAX 99.1 101.3 AVG MIN 55.2 56.3 AVERAGE 77.2 78.8 MAXIMUM 106 106 MINIMUM 47 45 AVG MAX 97.0 98.5 AVG MAX 97.0 98.5 AVG MIN 52.3 51.4 AVERAGE 74.7 75.0 MAXIMUM 10 110 MINIMUM 47 45 AVG MAX 99.3 100.7 AVG MIN 56.7 56.3 AVERAGE 78.0 78.5 MAXIMUM 109 112 MINIMUM 45 45 AVG MAX 99.3 100.7 AVG MIN 56.7 56.3 AVERAGE 78.0 78.5 MAXIMUM 109 112 MINIMUM 45 45 AVG MAX 103.7 104.7 AVG MIN 54.4 53.9 AVERAGE 79.1 79.3 MAXIMUM 107 108 MINIMUM 45 45 AVG MAX 103.7 104.7 AVG MIN 54.4 53.9 AVERAGE 79.1 79.3 MAXIMUM 107 108 MINIMUM 49 42 AVG MAX 103.7 104.7 AVG MIN 54.4 53.9 AVERAGE 79.1 79.3 MAXIMUM 107 108 MINIMUM 49 42 AVG MAX 103.7 104.7 AVG MIN 54.4 53.9 AVERAGE 79.1 79.3 MAXIMUM 107 108 MINIMUM 49 42 AVG MAX 103.7 104.7 AVG MIN 54.4 53.9 AVERAGE 79.1 79.3 MAXIMUM 98 9.5 AVERAGE 79.1 79.3 MAXIMUM 98 9.5 AVERAGE 79.1 79.3 MAXIMUM 97 99 MINIMUM 40 40 AVG MAX 78.5 79.3 AVG MIN 49.4 49.8 AVERAGE 64.0 64.7 MAXIMUM 98 9.5 AVERAGE 64.0 64.7 MAXIMUM 98 9.2 MAXIMUM 98 92 93 MAXIMUM 98 92 MAXIMUM 98 93 MAXIMUM 98 92 MAXIMUM 98 93 | MAXIMUM 90 79 96 MINIMUM 44 48 48 AVG MAX 74.5 80.9 AVG MIN 51.3 53.0 AVERAGE 62.9 67.0 MAXIMUM 106 107 98 MINIMUM 51 51 50 AVG MAX 97.5 97.6 89.8 AVG MIN 58.3 57.5 55.6 AVERAGE 77.9 77.6 72.7 MAXIMUM 104 103 94 MINIMUM 52 53 46 AVG MAX 94.9 95.9 87.3 AVG MAX 94.9 95.9 87.3 AVG MIN 57.2 57.5 56.0 AVERAGE 76.0 76.7 71.6 MAXIMUM 109 108 98 MINIMUM 44 50 50 AVG MAX 95.2 56.3 56.1 AVERAGE 77.2 78.8 74.0 MAXIMUM 106 106 99 MINIMUM 47 45 45 AVG MAX 97.0 98.5 91.5 AVG MAX 97.0 98.5 91.5 AVG MAX 99.3 100.7 71.6 MAXIMUM 110 110 101 MINIMUM 47 45 45 AVG MAX 99.3 100.7 71.6 MAXIMUM 109 112 101 MINIMUM 51 50 50 AVG MAX 99.3 100.7 91.0 AVG MAX 99.3 100.7 91.0 AVG MAX 99.3 100.7 91.0 AVG MAX 65.7 56.3 55.7 AVERAGE 78.0 78.5 73.4 MAXIMUM 109 112 101 MINIMUM 45 45 45 46 AVG MAX 103.7 104.7 95.2 AVG MIN 54.4 53.9 51.8 AVERAGE 79.1 79.3 73.5 MAXIMUM 107 108 100 MINIMUM 49 42 48 AVG MAX 95.5 96.2 89.3 AVG MIN 55.8 54.5 55.0 AVERAGE 64.0 64.7 67.7 MAXIMUM 91 87 99 99 MINIMUM 49 42 48 AVG MAX 78.5 79.3 82.6 AVG MIN 51.2 51.0 53.5 AVERAGE 64.0 64.7 67.7 MAXIMUM 91 87 87 MAXIMUM 91 87 87 MINIMUM 92 92 97 MINIMUM 40 49 42 48 AVG MIN 51.2 51.0 53.5 AVERAGE 66.0 64.2 63.3 MAXIMUM 98 9 100 MINIMUM 48 49 49.8 52.7 AVERAGE 66.0 64.7 67.7 MAXIMUM 98 9 100 MINIMUM 46 47 49.8 AVG MIN 51.2 51.0 53.5 AVERAGE 67.1 67.6 68.8 MAXIMUM 98 9 100 MINIMUM 48 49 49.4 49.8 52.7 AVERAGE 67.1 67.6 68.8 MAXIMUM 98 9 100 MINIMUM 48 49 42 48 AVG MIN 51.2 51.0 53.5 AVERAGE 67.1 67.6 68.8 | MAXINUM 90 79 96 96 MINIMUM 44 48 48 40 AVG MAX 74.5 80.9 81.2 AVG MIN 51.3 53.0 44.7 AVERAGE 62.9 67.0 63.0 MAXIMUM 51.5 51 50 38 AVG MIN 51.5 57.5 55.6 44.0 AVERAGE 77.9 77.6 72.7 63.7 MAXIMUM 104 103 94 90 MINIMUM 52 53 46 39 AVG MAX 94.9 95.9 87.3 80.9 AVG MIN 57.2 57.5 56.0 46.8 AVERAGE 76.0 76.7 71.6 63.9 MAXIMUM 109 108 98 94 MINIMUM 44 50 50 40 AVG MAX 99.1 101.3 91.8 85.9 AVG MAX 99.1 101.3 91.8 85.9 AVG MAX 97.9 98.5 91.5 85.3 AVG MIN 55.2 55.3 56.1 48.9 AVERAGE 77.2 78.8 74.0 67.2 MAXIMUM 106 106 99 95 MINIMUM 47 45 45 45 AVERAGE 77.7 75.0 71.6 62.7 MAXIMUM 101 100 101 94 MINIMUM 47 45 45 45 AVG MIN 52.3 51.4 51.6 40.0 AVERAGE 74.7 75.0 71.6 62.7 MAXIMUM 109 112 101 94 MINIMUM 51 50 50 36 AVG MAX 97.0 98.5 91.5 85.3 AVG MIN 52.3 51.4 51.6 40.0 AVERAGE 78.0 78.5 73.4 64.3 MAXIMUM 109 112 101 94 MINIMUM 51 50 50 36 AVG MAX 99.3 100.7 91.0 84.9 95.2 88.2 AVG MAX 95.5 96.2 89.3 84.8 AVG MIN 54.4 53.9 51.8 42.1 AVERAGE 79.1 79.3 73.5 65.2 MAXIMUM 109 112 101 95 MINIMUM 49 42 48 37 AVG MAX 95.5 96.2 89.3 84.8 AVG MIN 55.8 54.5 55.0 43.5 AVERAGE 64.0 64.7 67.7 65.7 MAXIMUM 99 89 99 97 MINIMUM 47 49 82 48 39.3 AVG MAX 78.5 79.3 82.6 82.8 AVG MIN 55.8 54.5 55.0 43.5 AVERAGE 66.0 64.2 63.3 69.3 | MAXIMUM 90 79 96 96 90 MINIMUM 44 48 48 40 38 AVG MAX 74.5 80.9 81.2 72.4 AVG MIN 51.3 53.0 44.7 43.4 AVERAGE 62.9 67.0 63.0 57.9 MINIMUM 51.5 51 50 38 30 AVG MAX 97.5 97.6 89.8 83.4 72.2 AVG MIN 58.3 57.5 55.6 44.0 42.5 AVERAGE 77.9 77.6 72.7 63.7 57.4 MAXIMUM 52 53 46 39 30 AVG MAX 94.9 95.9 87.3 80.9 67.1 AVERAGE 76.0 76.7 71.6 63.9 55.5 MINIMUM 52 53 46 39 30 AVG MAX 94.9 95.9 87.3 80.9 67.1 AVERAGE 76.0 76.7 71.6 63.9 55.5 MINIMUM 44 50 50 40 35 AVERAGE 77.2 78.8 74.0 67.2 59.3 MINIMUM 45 50 50 40 35 AVERAGE 77.2 78.8 74.0 67.2 59.3 MINIMUM 47 74 55 45 29 26 AVG MAX 99.1 101.3 91.8 85.5 73.1 AVG MIN 52.3 51.4 51.6 40.0 40.1 AVERAGE 74.7 75.0 71.6 62.7 55.8 MAXIMUM 100 100 100 36 30 AVG MAX 99.3 100.7 91.0 84.9 70.3 AVG MIN 56.7 56.3 55.7 43.6 42.5 AVG MIN 56.7 56.3 55.7 43.6 42.5 AVG MIN 56.7 56.3 55.7 43.6 42.3 56.4 AVG MIN 57.6 57.5 55.0 43.5 56.4 AVG MIN 64.9 77.3 77.1 77.1 77.1 75.4 67.8 AVG MIN 64.9 77.3 77.5 77.5 77.6 67.7 56.3 55.0 43.5 56.4 AVG MIN 64.9 77.3 77.3 77.5 77.5 77.5 77.5 77.5 77.5 | MAXIMUM 90 79 96 96 90 77 MININIUM 44 48 48 48 40 38 20 AVC MAX 74,5 80.9 81.2 72.4 58.7 AVE MIN 51.3 53.0 44.7 43.4 31.7 AVERAGE 62.9 67.0 63.0 57.9 45.2 MAXIMUM 106 107 98 94 92 72 MININIUM 51 51 50 38 30 20 AVG MAX 97.5 97.6 98.8 83.4 72.2 58.7 AVG MIN 58.3 57.5 55.6 44.0 42.5 29.0 AVERAGE 77.9 77.6 72.7 63.7 57.4 43.8 MAXIMUM 104 103 94 90 83 67 MININIUM 52 53 46 39 30 22 AVG MAX 94.9 95.9 87.3 80.9 67.1 55.3 AVG MIN 57.2 57.5 56.0 46.8 43.8 31.3 AVERAGE 76.0 76.7 71.6 63.9 55.5 43.3 MAXIMUM 44 50 50 40 35 18 AVG MAX 99.1 101.3 91.8 85.5 73.1 58.9 AVG MAX 99.1 101.3 91.8 85.5 73.1 58.0 AVERAGE 77.2 78.8 76.1 48.9 45.4 32.0 AVERAGE 77.2 78.8 76.1 48.9 45.4 32.0 MAXIMUM 106 106 99 95 89 73 AVG MIN 55.2 56.3 35.1 48.9 45.4 32.0 AVERAGE 77.2 78.8 76.1 67.2 59.3 45.3 MAXIMUM 106 106 99 95 89 73 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 AVG MAX 99.1 91.0 101 94 89 73 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 AVG MAX 99.1 91.0 101 94 89 73 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 AVG MAX 99.3 100.7 91.0 84.9 70.3 58.8 AVG MAX 99.3 100.7 91.0 84.9 70.3 58.8 AVG MIN 56.7 56.3 55.7 73.6 64.3 56.4 44.2 MAXIMUM 110 101 94 89 73 AVG MIN 55.2 56.3 55.7 73.6 64.3 56.4 44.2 MAXIMUM 107 108 100 98 88 72 MAXIMUM 109 112 101 95 94 76 MININIUM 51 50 50 36 30 17 AVG MAX 99.3 100.7 91.0 84.9 70.3 58.8 AVG MAX 103.7 104.7 95.2 88.2 73.7 61.0 AVG MAX 95.5 96.2 89.3 84.8 65.6 58.8 AVG MAX 103.7 104.7 95.2 88.2 73.7 61.0 AVG MAX 104.7 95.2 88.3 24.4 36 28 AVG MAX 105.7 59.6 64.2 54.5 55.0 56.3 56.4 44.7 MAXIMUM 98 92 97 88 86 76 MAXIMUM 98 92 97 89 88 67 MAXIMUM 98 92 97 89 88 67 MAXIMUM 191 67.0 67.6 68.8 64.3 57.2 46.6 AVG MAX 103.7 104.7 95.2 66.3 55.7 58.3 49.9 MININIUM 46 47 48 48 47 48 47 49 36 28 AVG MAX 80.9 89.9 97 98 98 86 76 MAXIMUM 99 89 90 97 96 78 MAXIMUM 91 87.7 83.7 86.4 84.3 57.2 46.6 AVG MAX 83.9 9- 89.8 88.8 88.0 66.7 43.9 34.8 AVG MAX 84.0 83.8 83.8 88.0 66.7 43.9 34.8 AV | MAXIMUM 90 79 96 96 90 77 82 MININUM 44 48 48 48 40 38 20 24 AVG MAX 76.5 80.9 81.2 72.4 58.7 64.0 AVG MIN 51.3 53.0 44.7 43.4 31.7 32.4 AVERAGE 62.9 67.0 63.0 57.9 45.2 48.2 MAXIMUM 106 107 98 94 92 72 76 MININUM 51 51 50 38 30.2 20 20 20 AVG MIN 58.3 57.5 55.6 44.0 42.5 29.0 29.6 AVG MIN 58.3 57.5 55.6 44.0 42.5 29.0 29.6 AVG MIN 58.3 57.5 55.6 44.0 42.5 29.0 29.6 AVG MIN 58.3 57.5 55.6 44.0 42.5 29.0 29.6 AVG MIN 58.3 57.5 55.6 44.0 42.5 29.0 29.6 AVG MIN 59.9 95.9 87.3 80.9 67.1 55.3 58.7 AVG MIN 57.2 57.5 56.0 46.8 43.8 31.3 31.4 AVERAGE 70.0 76.7 71.6 63.9 55.5 43.3 43.0 MAXIMUM 109 108 98 94 92 72 74 MININUM 44 30 50 40 35 18 24 AVG MAX 99.1 101.3 91.8 85.5 73.1 38.9 61.0 AVG MIN 55.2 56.3 56.1 48.9 43.4 32.0 33.2 AVERAGE 77.2 78.8 74.0 67.2 59.3 45.5 47.1 MAXIMUM 106 106 99 95 89 73 89 73 88 MININUM 47 45 45 29 26 15 17 80.4 AVG MAX 99.3 100.7 91.5 88.3 71.5 39.3 63.1 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.5 50.0 36.9 73.7 50.0 63.7 AVG MIN 52.3 51.4 51.5 50.0 36.9 73.7 50.0 63.7 AVG MIN 52.3 51.4 51.6 40.0 40.1 27.9 28.5 AVG MIN 52.3 51.4 51.5 50.0 36.9 73.7 50.0 63.7 AVG MIN 52.3 51.4 51.5 50.0 36.9 73.7 50.0 63.7 AVG MIN 52.3 51.4 51.5 50.0 36.9 73.7 50.0 63.7 AVG MIN 52.3 51.5 50.0 50.0 36.9 73.7 50.0 63.7 AVG MIN 52.5 50.5 50.5 50.3 50.2 50.4 40.7 46.8 AVG MIN 52.5 50.5 50.5 50.3 50.2 50.4 40.7 40.8 AVG MIN 51.5 50.5 52 48.4 43.8 50.1 50.8 50.6 50.1 AVG MIN 64 67 68.8 64. | MAXIMUM 90 79 96 96 90 77 82 80 MINIMUM 44 48 48 40 38 20 24 36 67 8 80 98 11.2 72.4 58.7 64.0 67.8 80.9 81.2 72.4 58.7 64.0 67.8 80.9 81.2 72.4 58.7 64.0 67.8 80.9 81.2 72.4 58.7 64.0 67.8 80.9 81.2 72.4 58.7 64.0 67.8 80.9 81.2 72.4 58.7 64.0 67.8 80.9 81.2 72.4 58.7 64.0 67.8 80.9 81.2 72.4 58.7 64.0 67.8 80.9 81.2 72.4 58.7 64.0 67.8 80.9 81.2 72.4 58.7 64.0 67.8 80.9 81.2 72.4 58.7 64.0 67.8 80.9 81.2 72.4 58.7 64.0 67.8 80.9 81.2 72.4 58.7 67.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 8 | MAXIMUN 90 79 96 96 90 77 82 80 86 MINITURY 44 48 48 48 40 38 20 24 36 55 71.0 AVE MIN 51.3 53.0 44.7 43.4 31.7 32.4 46.0 46.7 87.5 AVE MIN 51.3 53.0 44.7 43.4 31.7 32.4 46.0 47.5 AVE MIN 51.3 51.3 50 38 30 20 20 34 32 AVE MIN 51.5 51 50 38 30 20 20 34 32 AVE MIN 51.5 51 50 38 30 20 20 34 32 AVE MIN 51.5 51 50 38 30 20 20 34 32 AVE MIN 51.5 51 50 38 30 20 20 34 32 AVE MIN 58.3 57.5 55.6 44.0 42.5 29.0 29.6 43.6 39.4 AVE MIN 58.3 57.5 55.6 44.0 42.5 29.0 29.6 43.6 39.4 AVE MIN 58.3 57.5 55.6 44.0 42.5 29.0 29.6 43.6 39.4 AVE MIN 59.2 53.6 46.8 39 30 22 21 32 31 AVE MIN 59.4 59.5 59.6 44.8 43.8 31.3 31.4 43.1 34.4 43.1 AVE MIN 59.2 57.5 58.6 46.8
43.8 31.3 31.4 43.1 34.4 43.1 AVE MIN 59.2 57.5 58.6 46.8 43.8 31.3 31.4 43.1 34.4 43.1 AVE MIN 59.2 57.2 57.5 56.0 46.8 43.8 31.3 31.4 43.1 34.4 43.1 AVE MIN 59.2 57.2 57.5 56.0 46.8 40.4 51.8 51.6 51.6 51.6 51.6 51.6 51.6 51.6 51.6 | MAXIMUM 90 79 96 00 37, 82 80 86 90 0 77 82 80 86 90 0 77 82 80 86 90 0 77 82 80 86 90 81.2 72.4 83.7 86.0 67.8 71.0 70.3 80 81 81.2 72.4 83.7 86.0 67.8 71.0 70.3 80 81 81 81.7 82.4 86.0 46.0 43.5 87 87 88 88 89 81.2 72.4 83.7 82.4 86.0 46.0 43.5 87 87 88 88 89 81.2 72 82.7 76 79 78 89 90 81.2 72 76 79 78 89 90 81.2 72 72 76 79 78 89 90 81.2 72 72 76 79 78 89 90 81.2 72 72 76 79 78 89 90 81.2 72 72 76 79 78 87 89 90 81.2 82 82 82 82 82 82 82 82 82 82 82 82 82 | MAXIMUM 90 79 96 96 90 77 82 80 86 90 85 85 81 81 81 81 81 81 81 81 81 81 81 81 81 | NAXINING 00 70 96 96 90 77 82 80 86 90 85 82 82 83 83 83 83 83 83 | MAXIMUM 190 79 96 96 99 97 77 82 80 85 82 85 87 87 88 87 87 88 87 87 87 87 88 87 87 | HAXIMEN 90 79 96 96 96 90 77 82 80 80 85 92 85 100 85 82 85 100 85 82 85 85 85 85 85 85 85 85 85 85 85 85 85 | TABLE A-3 (Cont.) TEMPERATURE DATA | Station Name | | | | 19 | 67 | | | | | | | 1968 | | | | | |------------------------|---|-----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------| | | | July | Aug | Sept | Oct | Nov | Dec | Jan | Feb | Mar | Apr. | May | June | July | Aug | Sept | | SAN FRANCISCO BAY AREA | | | | | | | | | | | | | | | | | | SONOMA | MAXIMUM | 103 | 104 | 100 | 90 | 86 | 80 | 71 | 76 | 84 | 89 | 91 | 100 | 105 | 106 | 100 | | | MINIMUM | 43 | 43 | 44 | 39 | 29 | 24 | 22 | 31 | 32 | 30 | 33 | 40 | 42 | 44 | 40 | | | AVG MAX | 90.5 | 93.8 | 88.7 | 82.2 | 67.9 | 58.3 | 55.3 | 64.6 | 68.5 | 75.6 | 76.7 | 87.6 | 90.8 | 86.6 | 87 | | | AVG MIN | 50.0 | 49.1 | 50.4 | 43.5 | 42.2 | 32.7 | 32.1 | 44.6 | 39.7 | 39.5 | 43.1 | 47.5 | 49.4 | 51.1 | 49 | | | AVERAGE | 70.3 | 71.5 | 69.6 | 62.9 | 55.1 | 45.5 | 43.7 | 54.6 | 54.1 | 57.6 | 59.9 | 67.6 | 70.1 | 68.9 | 68 | | NAPA-SOLANO E3 | | | | | | | | | | | | | | | | | | ANGWIN PUC | MAXIMUM | 96 | 101 | 95 | 84 | 86 | 74 | 70 | 69 | 78 | 81 | 88 | 98 | 101 | 95 | 89 | | | MINIMUM | 47 | 50 | 45 | 42 | 32 | 25 | 24 | 33 | 33 | 29 | 36 | 44 | 44 | 39 | 41 | | | AVG MAX | 88.9 | 92.3 | 84.8 | 74.0 | 64.1 | 51.4 | 50.9 | 56.4 | 60.3 | 68.0 | 71.1 | 84.7 | 88.8 | 79.0 | 78 | | | AVG MIN | 56.3 | 60.9 | 53.6 | 52.3 | 46.9 | 37.1 | 36.6 | 43.6 | 42.2 | 44.6 | 44.7 | 53.2 | 54.0 | 49.8 | 51 | | | AVERAGE | 72.6 | 76.6 | 69.2 | 63.2 | 55.5 | 44.3 | 43.8 | 50.0 | 51.3 | 56.3 | 57.9 | 69.0 | 71.4 | 64.4 | 64 | | CALISTOGA | MAXIMUM | 100 | 104 | 102 | 98 | 92 | 84 | 83 | 78 | 83 | 87 | 93 | 102 | 105 | 103 | 102 | | | MINIMUM | 44 | 33 | 42 | 38 | 30 | 22 | 31 | 31 | 30 | 31 | 34 | 38 | 40 | 43 | 41 | | | AVG MAX | 93.5 | 96.2 | 89.9 | 82.5 | 69.3 | 59.9 | 57.5 | 64.4 | 67.8 | 75.3 | 76.8 | 89.5 | 93.4 | 87.6 | 88 | | | AVG MIN | 51.6 | 50.8 | 51.0 | 44.5 | 42.4 | 35.5 | 31.8 | 43.6 | 38.9 | 38.3 | 41.2 | 47.2 | 50.1 | 50.4 | 49 | | | AVERAGE | 72.6 | 73.5 | 70.5 | 63.5 | 55.9 | 47.7 | 44.7 | 54.0 | 53.4 | 56.8 | 59.0 | 68.4 | 71.8 | 69.0 | 68 | | DENVERTON 1 S | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 101
53
89.1
59.4
74.2 | 102
53
90.7
58.3
74.5 | 100
50
86.5
57.2
71.8 | 91
43
80.0
51.2
65.6 | 85
34
67.9
45.4
56.7 | 72
22
54.3
32.0
43.2 | 67
18
52.8
32.9
42.9 | 77
32
 | 82
32
68.2
39.3
53.8 | 85
30
73.9
43.3
58.6 | 89
38
75.0
48.6
61.8 | 97
50
79.5
54.5
67.0 | 102
52
88.5
56.4
72.5 | 104
45
85.0
53.0
69.0 | 98
40
85
54
70 | | DUTTONS LANDING | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 92
50
76.8
54.6
65.7 | 88
49
78.3
53.3
65.8 | 98
51
80.1
54.0
67.1 | 88
43
77.9
48.2
63.1 | 83
35
68.9
45.7
57.3 | 78
29

 | 68
26
56.1
34.6
45.4 | 72
37
61.1
45.1
53.1 | 80
36
65.7
44.0
54.9 | 86
39
72.0
44.5
58.3 | 88
39
71.7
46.1
58.9 | 93
40
77.0
51.3
64.2 | 95
48
78.4
52.9
65.7 | 102
45
78.1
53.8
66.0 | 95
45
81
53
67 | | FAIRFIELD FIRE STATION | MAXIMUM | 102 | 105 | 97 | 89 | 87 | 74 | 76 | 80 | 84 | 87 | 91 | 99 | 102 | 102 | 98 | | | MINIMUM | 52 | 52 | 54 | 42 | 34 | 26 | 24 | 35 | 37 | 32 | 38 | 39 | 52 | 50 | 43 | | | AVG MAX | 90.7 | 94.5 | 88.3 | 83.1 | 69.1 | 57.5 | 55.4 | 65.1 | 67.8 | 74.6 | 74.6 | 85.9 | 88.0 | 83.9 | 85 | | | AVG MIN | 57.2 | 57.2 | 58.6 | 50.7 | 46.8 | 35.5 | 34.4 | 45.6 | 44.5 | 45.7 | 49.3 | 54.6 | 56.4 | 56.7 | 54 | | | AVERAGE | 74.0 | 75.9 | 73.5 | 66.9 | 58.0 | 46.5 | 44.9 | 55.4 | 56.2 | 60.2 | 62.0 | 70.3 | 72.2 | 70.3 | 69 | | MARE ISLAND NAVY | MAXIMUM | 93 | 90 | 96 | 86 | 82 | 73 | 66 | 72 | 82 | 85 | 88 | 95 | 96 | 98 | 95 | | | MINIMUM | 57 | 53 | 58 | 53 | 42 | 34 | 33 | 40 | 43 | 44 | 46 | 54 | 56 | 56 | 55 | | | AVG MAX | 81.8 | 79.3 | 81.4 | 78.0 | 65.7 | 55.4 | 53.3 | 61.5 | 67.2 | 72.3 | 73.5 | 81.9 | 82.0 | 82.3 | 81 | | | AVG MIN | 60.0 | 58.5 | 61.9 | 58.1 | 53.0 | 41.9 | 41.1 | 50.7 | 50.1 | 50.9 | 54.0 | 59.1 | 59.9 | 61.8 | 61 | | | AVERAGE | 70.9 | 68.9 | 71.7 | 68.0 | 59.4 | 48.7 | 47.2 | 56.1 | 58.7 | 61:6 | 63.8 | 70.5 | 71.0 | 72.1 | 71 | | NAPA STATE HOSPITAL | MAXIMUM | 99 | 98 | 102 | 92 | 85 | 81 | 80 | 77 | 83 | 87 | 90 | 100 | 98 | 105 | 97 | | | MINIMUM | 49 | 49 | 49 | 43 | 33 | | 26 | 35 | 34 | 36 | 37 | 44 | 45 | 45 | 44 | | | AVG MAX | 82.9 | 84.9 | 85.4 | 82.3 | 69.2 | 61.3 | 57.0 | 64.9 | 68.3 | 74.5 | 73.6 | 82.6 | 82.2 | 81.8 | 83 | | | AVG MIN | 54.0 | 53.4 | 54.3 | 49.1 | 45.5 | 37.3 | 35.3 | 46.7 | 42.9 | 44.0 | 46.0 | 52.8 | 53.0 | 54.0 | 54 | | | AVERAGE | 68.5 | 69.2 | 69.9 | 65.7 | 57.4 | 49.3 | 46.2 | 55.8 | 55.6 | 59.3 | 59.8 | 67.7 | 67.6 | 67.9 | 69 | | SAINT HELENA | MAXIMUM | 102 | 104 | 101 | 90 | 91 | 83 | 79 | 79 | 85 | 88 | 95 | 101 | 103 | 102 | 101 | | | MINIMUM | 46 | 47 | 46 | 42 | 30 | 25 | 22 | 31 | 32 | 35 | 35 | 44 | 46 | 45 | 42 | | | AVG MAX | 89.8 | 92.3 | 87.7 | 81.1 | 69.3 | 58.3 | 56.5 | 64.0 | 67.9 | 75.8 | 76.8 | 87.7 | 89.3 | 85.6 | 86 | | | AVG MIN | 53.2 | 52.7 | 52.3 | 46.8 | 43.7 | 35.2 | 32.6 | 44.8 | 40.1 | 41.5 | 45.0 | 51.1 | 52.7 | 53.1 | 51 | | | AVERAGE | 71.5 | 72.5 | 70.0 | 64.0 | 56.5 | 46.8 | 44.6 | 54.4 | 54.0 | 58.7 | 60.9 | 69.4 | 71.0 | 69.4 | 69 | | VETERANS HOME | MAXIMUM | 104 | 103 | 99 | 87 | 85 | 78 | 76 | 76 | 82 | 90. | 97 | 100 | 103 | 96 | 97 | | | MINIMUM | 47 | 46 | 45 | 42 | 33 | 28 | 26 | 34 | 38 | 35 | 38 | 43 | 48 | 47 | 42 | | | AVG MAX | 89.2 | 89.6 | 85.8 | 79.7 | 69.5 | 56.3 | 56.8 | 62.7 | 67.8 | 76.3 | 79.8 | 89.2 | 90.0 | 84.8 | 85 | | | AVG MIN | 54.3 | 54.0 | 53.3 | 48.6 | 43.7 | 36.0 | 34.5 | 45.3 | 43.5 | 43.2 | 45.4 | 52.7 | 53.8 | 54.1 | 53 | | | AVERAGE | 71.8 | 71.8 | 69.6 | 64.2 | 56.6 | 46.2 | 45.7 | 54.0 | 55.7 | 59.8 | 62.6 | 70.9 | 71.9 | 69.4 | 69 | | EAST BAY E4 | | | | | | | | | | | | | | | | | | ALAMO 1 N | MAXIMUM | 107 | 105 | 97 | 85 | 82 | 70 | 69 | 72 | 82 | 84 | 92 | 103 | 102 | 98 | 95 | | | MINIMUM | 43 | 50 | 48 | 45 | 34 | 28 | 26 | 34 | 34 | 36 | 39 | 46 | 48 | 47 | 42 | | | AVG MAX | 93.5 | 93.3 | 87.6 | 77.2 | 67.1 | 55.3 | 53.0 | 62.8 | 66.9 | 73.0 | 75.6 | 88.9 | 92.5 | 80.6 | 84 | | | AVG MIN | 54.6 | 56.3 | 55.9 | 49.5 | 46.6 | 36.0 | 34.1 | 45.3 | 42.0 | 44.5 | 48.3 | 53.7 | 54.5 | 51.1 | 51 | | | AVERAGE | 74.0 | 74.8 | 71.8 | 63.4 | 56.9 | 45.7 | 43.6 | 54.1 | 54.5 | 58.8 | 62.0 | 71.3 | 73.5 | 65.9 | 68 | | BERKELEY | MAXIMUM | 79 | 77 | 91 | 85 | 81 | 75 | 73 | 74 | 79 | 80 | 78 | 85 | 84 | 98 | 88 | | | MINIMUM | 52 | 51 | 52 | 49 | 44 | 35 | 33 | 43 | 43 | 41 | 43 | 49 | 47 | 51 | 48 | | | AVG MAX | 69.1 | 69.0 | 71.7 | 74.1 | 65.6 | 57.3 | 56.0 | 61.2 | 63.7 | 65.7 | 64.5 | 71.1 | 68.6 | 70.1 | 72 | | | AVG MIN | 54.1 | 53.9 | 57.2 | 54.1 | 51.9 | 43.7 | 41.3 | 49.8 | 48.2 | 47.2 | 48.5 | 52.7 | 52.1 | 54.6 | 56 | | | AVERAGE | 61.6 | 61.5 | 64.5 | 64.1 | 58.8 | 50.5 | 48.7 | 55.5 | 56.0 | 56.5 | 56.5 | 61.9 | 60.4 | 62.4 | 64 | | CROCKETT | MAXIMUM | 97 | 93 | 96 | 87 | 87 | 75 | 69 | 73 | 81 | 85 | 88 | 94 | 97 | 100 | 98 | | | MINIMUM | 52 | 53 | 53 | 47 | 39 | 30 | 30 | 36 | 38 | 41 | 41 | 51 | 51 | 53 | 49 | | | AVG MAX | 84.4 | 86.3 | 83.3 | 79.2 | 69.0 | 57.6 | 53.5 | 61.2 | 67.3 | 72.3 | 72.8 | 82.5 | 83.6 | 81.6 | 83 | | | AVG MIN | 54.7 | 55.2 | 58.0 | 52.2 | 48.5 | 37.6 | 37.4 | 47.4 | 45.5 | 46.4 | 50.2 | 55.6 | 54.9 | 57.3 | 56 | | | AVERAGE | 69.6 | 70.8 | 70.7 | 65.7 | 58.8 | 47.6 | 45.5 | 54.3 | 56.4 | 59.4 | 61.5 | 69.1 | 69.3 | 69.5 | 69 | | MARTINEZ FIRE STATION | MAXIMUM | 100 | 98 | 94 | 85 | 84 | 73 | 69 | 73 | 79 | 87 | 89 | 96 | 99 | 99 | 96 | | | MINIMUM | 51 | 51 | 51 | 44 | 35 | 27 | 28 | 35 | 37 | 40 | 40 | 49 | 50 | 52 | 42 | | | AVG MAX | 88.2 | 88.9 | 84.3 | 77.9 | 67.2 | 55.8 | 53.0 | 60.3 | 66.1 | 72.8 | 73.8 | 84.4 | 87.1 | 82.0 | 82 | | | AVG MIN | 56.1 | 55.6 | 57.1 | 50.1 | 46.9 | 35.4 | 34.8 | 46.1 | 44.5 | 45.2 | 49.7 | 54.7 | 54.9 | 56.2 | 53 | | | AVERAGE | 72.2 | 72.3 | 70.7 | 64.0 | 57.1 | 45.6 | 43.9 | 53.2 | 55.3 | 59.0 | 61.8 | 69.6 | 71.0 | 69.1 | 68 | TABLE A·3 (Cont.) TEMPERATURE DATA | Station Name | | - | , | , , , | 67 | | | | | | | 1968 | | | | | |-------------------------|---|------------------------------------|-----------------------------------
----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------------| | | | July | Aug | Sept | Oct | Nov | Dec | Jon | Feb | Mor | Apr | May | June | July | Aug | Sep | | SAN FRANCISCO BAY AREA | | | | | | | | | | | | | | | | | | EAST BAY E4 | | | | | | | | | | | | | | | | | | MOUNT DIABLO NORTH GATE | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 100
58.
93.0
66.4
79.7 | 104
60
94.8
69.0
81.9 | 96
48
87.0
60.5
73.8 | 89
44
77.4
55.3
66.4 | 84
32
67.7
49.5
58.6 | 70
22
53.0
38.9
46.0 | 74
29
55.4
39.9
47.7 | 71
37
59.9
45.6
52.8 | 79
36
61.9
43.7
52.8 | 84
33
68.2
45.7
57.0 | 87
38
70.0
47.2
58.6 | 97
43
83.7
56.9
70.3 | 100
48
88.0
61.5
74.8 | 99
48
79.8
57.7
68.8 | 93
44
83
56 | | OAKLAND 39TH AVENUE | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 93
49
79.0
52.2
65.6 | 92
48
79.6
51.5
65.6 | 95
50
78.8
54 1
66.5 | 89
46
77.2
50.3
63.8 | 84
35
65.7
47.5
56.6 | 73
38
56.2
41.3
48.8 | 71
30
55.5
39.4
47.5 | 75
39
63.4
48.9
56.2 | 82
38
66.0
46.5
56.3 | 84
41
70.1
46.2
58.2 | 86
42
69.8
48.4
59.1 | 88
48
77.3
52.4
64.9 | 93
47
77.0
52.3
64.7 | 101
51
76.6
54.2
65.4 | 93
45
79
53 | | OAKLAND CITY HALL | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 78
53
70.1
54.6
62.4 | 80
51
69.5
54.6
62.1 | 91
54
73.4
58.2
65.8 | 86
52
74.8
56.9
65.9 | 82
45
64.1
53.1
58.6 | 73
35
55.1
43.8
49.5 | | 75
42
59.3
48.9
54.1 | 78
43
61.5
50.3
55.9 | 80
46
64.3
49.3
56.8 | 82
47
64.9
49.2
57.1 | 81
51
69.7
54.3
62.0 | 83
50
68.7
54.1
61.4 | 100
54
70.8
57.4
64.1 | 97
50
71.
56. | | OAKLAND WB AIRPORT | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 83
54
70.3
57.0
63.7 | 79
53
71.0
56.8
63.9 | 90
57
73.6
59.3
66.5 | 85
50
72.5
54.6
63.6 | 78
43
65.5
51.8
58.7 | 73
36
56.1
41.7
48.9 | 74
33
53.6
40.5
47.1 | 74
43
60.0
50.9
55.5 | 79
44
62.3
49.4
55.9 | 83
45
64.8
49.2
57.0 | 75
46
65.0
52.7
58.9 | 86
50
70.0
56.0
63.0 | 87
53
69.5
56.8
63.2 | 89
55
72.4
59.2
65.8 | 94
50
74.
57.
66. | | PORT CHICAGO NAD | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 101
49
91.7
54.2
73.0 | 101
50
92.7
53.7
73.2 | 96
50
86.9
55.2
71.1 | 86
41
79.3
47.0
63.2 | 85
29
67.8
43.3
55.6 | 72
23
56.4
32.3
44.4 | 71
21
54.0
32.7
43.4 | 73
32
63.0
43.3
53.2 | 83
33
67.9
40.9
54.4 | 86
30
75.1
39.9
57.5 | 90
34
76.5
45.0
60.8 | 98
46
87.9
53.2
70.6 | 100
47
90.3
53.5
71.9 | 100
49
86.4
54.4
70.4 | 97
42
85.
52. | | RICHMOND | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 83
52
69.3
55.2
62.3 | 79
53
69.5
55.6
62.6 | 94
49
73.7
57.1
65.4 | 87
48
76.1
53.9
65.0 | 85
40
68.4
50.2
59.3 | 76
33
58.1
39.9
49.0 | 73
31
56.5
39.4
48.0 | 75
39
62.6
49.4
56.0 | 79
41
65.5
48.5
57.0 | 84
42
68.8
47.9
58.4 | 82
43
67.1
51.7
59.4 | 85
52
71.7
55.6
63.7 | 84
51
69.0
55.2
62.1 | 98
55
72.2
58.9
65.6 | 95
52
75.
57.
66. | | SAINT MARYS COLLEGE | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 98
51
85.5
55.1
70.3 | 100
47
87.9
54.4
71.2 | 93
49
81.3
54.5
67.9 | 83
36
75.6
44.6
60.1 | 80
27
63.6
42.2
52.9 | 70
21
54.1
30.9
42.5 | 69
21
51.3
31.5
41.4 | 69
31
59.6
43.3
51.5 | 80
32
63.6
40.8
52.2 | 86
31
72.2
42.0
57.1 | 87
33
69.2
46.3
57.8 | 95
42
80.3
51.1
65.7 | 95
46
82.3
52.5
67.4 | 98
46
78.2
53.7
66.0 | 93
37
78.
50.
64. | | UPPER SAN LEANDRO FIL | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 91
50
76.3
53.1
64.7 | 90
51
78.1
53.2
65.7 | 55.0 | 89
47
75.9
51.5
63.7 | 86
39
67.8
49.4
58.6 | 74
29
58.0
39.0
48.5 | 72
29
56.7
37.2
47.0 | 74
32
62.0
46.6
54.3 | 80
36
66.4
42.4
54.4 | 90
39
70.7
43.5
57.1 | 87
40
67.8
45.6
56.7 | 89
46
75.4
50.0
62.7 | 92
45
76.9
51.0
64.0 | 100
50
74.8
53.5
64.2 | 95
45
77.
52.
65. | | WALNUT CREEK 2 ESE | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 100
46
90.7
52.8
71.8 | 103
47
93.3
52.4
72.9 | 96
47
86.7
52.1
69.4 | 87
39
79.5
42.9
61.2 | 83
29
68.7
41.9
55.3 | 73
23
56.7
31.2
44.0 | 72
21
54.4
30.5
42.5 | 74
32
63.7
41.6
52.7 | 83
30
67.8
39.2
53.5 | 86
30
73.8
38.7
56.3 | 90
35
74.4
45.1
59.8 | 99
42
85.1
51.0
68.1 | 103
46
89.0
53.3
71.2 | 99
47
83.8
54.0
68.9 | 95
40
84.
50.
67. | | LAMEDA CREEK E5 | | | | | | | | | | | | | | | | | | LIVERMORE COUNTY FD | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 101
50
91.4
55.5
73.5 | 104
52
92.0
56.8
74.4 | 92
52
84.8
57.6
71.2 | | 89
28
70.8
41.7
56.3 | 73
25
57.1
33.6
45.4 | 72
22
57.2
32.5
44.9 | 74
33
64.8
43.7
54.3 | 84
31
68.4
39.2
53.8 | 90
30
74.6
38.3
56.5 | 90
33
75.9
43.5
59.7 | 100
38
87.7
49.4
68.6 | 105
46
91.3
53.1
72.2 | 105
46
87.3
52.3
69.8 | 100
40
87.
51.
69. | | LIVERMORE SEWAGE PLANT | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 102
44
89.7
52.9
71.3 | 104
47
92.6
54.2
73.4 | 98
48
86.5
53.6
70.0 | 88
40
80.7
44.7
62.7 | 90
26
68.6
40.8
54.7 | 72
24
58.2
31.8
45.0 | 72
19
56.0
30.7
43.4 | 72
34
63.2
44.6
53.9 | 83
32
66.8
40.3
53.6 | 88
30
73.7
38.8
56.3 | 88
34
73.6
45.4
59.5 | 98
42
85.1
51.4
68.2 | 101
50
86.6
54.4
70.5 | 100
48
83.9
54.0
69.4 | 98
42
84.
53. | | LIVERMORE 2 SSW | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 104
48
91.8
53.5
72.7 | 108
49
94.2
55.4
74.8 | 99
50
87.6
55.2
71.4 | 91
41
80.9
46.5
63.7 | | RE | | | | | | | | | | | MOUNT HAMILTON | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 92
58
83.3
66.3
74.8 | 93
64
86.0
70.9
78.5 | 84
44
77.0
59.7
68.4 | 79
38
69.3
52.0
60.7 | 76
30
58.5
45.8
52.2 | 64
12
45.8
31.7
38.8 | 67
20
49.5
36.6
43.1 | 67
26
54.6
41.3
48.0 | 69
29
53.2
40.0
46.6 | 74
28
59.1
43.0
51.1 | 76
32
61.9
46.0
54.0 | 88
38
76.1
58.7
67.4 | 88
50
81.5
66.0
73.8 | 91
41
74.8
57.9
66.4 | 89
39
75.
59. | | NEWARK | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 90
54
77.1
56.0
66.6 | 89
54
78.8
56.8
67.8 | 93
55
78.3
59.0
68.7 | 87
50
75.7
54.0
64.9 | 83
41
68.3
50.4
59.4 | 73
29
57.6
39.0
48.3 | 70
30
54.8
38.5
46.7 | 75
40
62.1
50.0
56.1 | 78
41
64.9
47.3
56.1 | 81
33
63.6
43.4
53.5 | 80
41
67.5
50.1
58.8 | 90
49
74.5
55.5
65.0 | 92
54
76.3
56.6
66.5 | 98
55
76.0
58.5
67.3 | 94
50
76.
57 | TABLE A·3 (Cont.) TEMPERATURE DATA | Station Name | | | | 19 | · · · · · · · · · · · · · · · · · · · | | | | | | | 1968 | | | | | |-----------------------------------|---|-----------------------------------|-----------------------------------|-----------------------------------|---------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-------------------------------| | | | July | Aug | Sept | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | June | July | Aug | Sec | | SAN FRANCISCO BAY AREA | | | | | | | | | | | | | | | | | | ALAMEDA CREEK E5 | | | | | | | | | | | | | | | | | | PLEASANTON NURSERY | MAXIMUM | 100 | 103 | 96 | 90 | 88 | 75 | 72 | 76 | 82 | 87 | 88 | 101 | 104 | 99 | 98 | | | MINIMUM
AVG MAX
AVG MIN
AVERAGE | 48
91.8
53.2
72.5 | 48
93.2
54.1
73.6 | 50
86.7
54.8
70.8 | 38
80.5
45.1
62.8 | 26
68.8
42.8
55.8 | 22
57.0
33.0
45.0 | 21
55.3
33.0
44.2 | 34
63.6
46.8
55.2 | 32
67.0
41.6
54.3 |
31
72.3
39.4
55.9 | 35
74.2
45.2
59.7 | 40
85.1
50.7
67.9 | 42
88.6
51.8
70.2 | 44
83.4
52.7
68.1 | 36
84.
49.
66. | | SANTA CLARA VALLEY E6 | | | | | | | | | | | | | | | | | | ALAMITOS PERCOLATION POND | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 100
50
87.1
55.8
71.4 | 97
51
88.7
56.4
72.6 | 99
51
84.7
57.1
70.9 | 91
45
80.4
49.6
65.0 | 87
32
69.4
47.3
58.4 | 75
24
58.9
37.0
48.0 | 72
29
57.5
35.2
46.4 | 76
39
64.4
46.6
55.5 | 84
37
68.8
44.5
56.7 | 89
36
73.4
43.3
58.4 | 87
33
75.7
46.3
61.0 | 91
37
83.8
49.0 | 97
45
86.1
51.0
68.6 | 102
33
83.2
53.9
68.6 | 95
45
83
53
68 | | LEXINGTON RESERVOIR | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 100
43
89.7
52.0
70.8 | 101
33
91.1
48.8
70.0 | 100
30
87.0
48.0
67.5 | 91
33
80.7
46.6
63.6 | 88
31
69.6
43.4
56.5 | 74
25
57.7
33.3
45.5 | 72
20
56.8
33.6
45.2 | 76
32
63.3
42.3
52.8 | 82
23
66.0
40.3
53.2 | 81
32
69.9
40.0
55.0 | 88
33
73.6
42.3
58.0 | 99
37
84.7
48.1
66.4 | 99
42
88.5
49.9
69.2 | 103
45
83.6
50.8
67.2 | 98
33
84
50
67 | | LOS GATOS | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 100
48
87.2
54.6
70.9 | 98
50
88.6
55.3
72.0 | 97
49
84.9
55.2
70.1 | 90
43
79.5
48.2
63.9 | 85
34
68.5
46.2
57.4 | 73
27
58.3
36.9
47.6 | 72
26
57.1
35.0
46.1 | 76
35
64.5
46.6
55.6 | 84
35
68.0
42.8
55.4 | 83
35
72.6
42.3
57.5 | 89
38
73.6
45.7
59.7 | 98
41
84.1
51.7
67.9 | 97
49
85.4
54.1
69.8 | 101
48
82.6
54.7
68.7 | 97
43
82.
53.
67. | | BAYSIDE-SAN MATEO E7 | | | | | | | | | | 6 | | | | | | | | SAN FRANCISCO WB AIRPORT | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 87
50
71.9
53.5
62.7 | 80
51
71.7
53.9
62.8 | 92
55
75.1
57.6
66.4 | 86
46
74.4
52.5
63.5 | 85
40
66.3
49.2
57.8 | 72
31
56.3
39.8
48.1 | 71
32
54.7
38.2
46.5 | 72
38
60.5
48.5
54.5 | 76
40
62.8
46.2
54.5 | 79
39
64.4
45.4
54.9 | 72
40
64.5
48.0
56.3 | 85
46
71.3
51.3
61.3 | 88
49
71.1
52.6
61.9 | 98
52
73.5
56.0
64.8 | 91
48
73.
54. | | SAN FRANCISCO FOB | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 78
50
63.9
53.8
58.9 | 72
51
63.8
54.5
59.2 | 87
56
69.3
57.7
63.5 | 86
55
72.5
58.5
65.5 | 83
46
65.0
54.9
60.0 | 74
37
57.1
46.6
51.9 | 74
36
55.3
44.2
49.8 | 73
46
61.0
52.3
56.7 | 77
48
62.1
51.3
56.7 | 78
45
62.8
49.6
56.2 | 72
47
60.8
50.5
55.7 | 77
50
64.5
53.4 | 79
49
63.0
52.9
58.0 | 96
54
67.6
56.9
62.3 | 89
49
69
56
63 | | SAN MATEO | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 94
48
77.8
52.5
65.2 | 87
49
79.1
54.1
66.6 | 98
51
81.0
57.3
69.2 | 89
41
78.7
51.2
65.0 | 89
44
68.8
51.3
60.1 | 78
33
60.1
41.3
50.7 | 78
30
58.5
40.3
49.4 | 79
37
64.7
49.4
57.1 | 83
39
67.3
46.9
57.1 | 86
39
71.0
45.9
58.5 | 82
41
68.3
49.8
59.1 | 91
46
76.5
54.0
65.3 | 95
49
77.2
55.1
66.2 | 103
51
78.2
58.1
68.2 | 95
43
79
55
67 | | COAST_CAN WATER ES | | | | | | | | | | | | | | | | | | COAST-SAN MATEO E8 HALF MOON BAY | MANTHEM | 71 | 71 | 70 | 07 | 05 | 76 | 72 | 72 | 70 | 7/. | 60 | 60 | 70 | 94 | 85 | | HALF FAMON BAY | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 71
48
63.5
53.7
58.6 | 71
50
63.4
53.6
58.5 | 78
50
68.1
55.1
61.6 | 87
43
70.1
50.5
60.3 | 85
40
65.2
49.7
57.5 | 74
35
57.5
43.0
50.3 | 73
36
58.5
45.2
51.9 | 72
40
58.9
49.6
54.3 | 79
41
61.7
46.1
53.9 | 74
37
62.0
43.7
52.9 | 69
39
60.6
48.3
54.5 | 69
39
61.6
50.7
56.2 | 70
48
62.7
52.7
57.7 | 46
66.8
53.8
60.3 | 68.
50.
59. | | SAN FRANCISCO SUNSET | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 70
51
63.0
56.8
59.9 | 70
47
62.8
55.1
59.0 | 79
54
68.0
56.4
62.2 | 92
46
70.8
53.1
62.0 | 83
42
65.2
54.3
59.8 | 70
34
59.1
45.0
52.1 | 72

56.6
 | 75

61.5
 | 74
38
60.8
46.5
53.7 | 78
40
61.0
45.8
53.4 | 65
41
59.7
48.4
54.1 | 68
45
61.8
50.8
56.3 | 69
48
61.7
51.4
56.6 | 95
53
66.9
56.2
61.6 | 82
46
67.
54. | | SAN GREGORIO 2 SE | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 77
40
68.2
49.4
58.8 | 74
43
69.4
49.9
59.7 | 89
44
73.1
50.7
61.9 | 91
39
73.2
44.8
59.0 | 88
34
67.5
44.6
56.1 | 75
28
58.9
38.4
48.7 | 78
27
59.0
37.6
48.3 | 76
39
62.1
47.4
54.8 | 76
34
63.0
42.9
53.0 | 78
32
62.3
40.6
51.5 | 72
36
62.8
45.1
54.0 | 80
37
67.8
47.8
57.8 | 82
41
67.9
50.4
59.2 | 94
42
71.9
52.0
62.0 | 87
37
72.
48.
60. | | NORTH COASTAL AREA | | | | | | | | | | | | | | | | | | MENDOCINO COAST F8 | | | | | | | | | | | | | | | | | | BOONVILLE HMS | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | | 107
42
94.3
50.2
72.2 | 106
45
91.4
49.7
70.6 | RE | | | | | | | | | | | | | FORT BRAGG | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 68
40
62.6
48.1
55.4 | 70
38
62.0
48.1
55.1 | 78
48
66.8
51.8
59.3 | 84
43
66.4
48.4
57.4 | 72
38
63.8
47.3
55.6 | 67
26
54.9
36.5
45.7 | 74
32
55.2
38.7
47.0 | 70
38
58.5
47.1
52.8 | 73
35
59.7
43.6
51.7 | 68
32
57.4
42.0
49.7 | 66
35
59.8
45.6
52.7 | 68
43
62.4
48.3
55.4 | 68
46
62.5
49.2
55.9 | 79
47
66.4
53.4
59.9 | 72
38
65.
50. | TABLE A-3 (Cont.) TEMPERATURE DATA | Station Name | | | | | 67 | | | | | | | 1968 | | | | | |--------------------------|---|-----------------------------------|-----------------------------------|---|--|--|--|--|--|--|--|--|--|--|--|----------------------------------| | | | July | Aug | Sept | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | | ORTH COASTAL AREA | | | | | | | | | | | | | | | | | | ENDOCINO COAST F8 | | | | | | | | | | | | | | | | | | FORT BRAGG AVIATION | MAXIMUM
MINIMUM
AVG MAX
AVG MIN | 66
41
62.4
45.3
53.9 | 68 | 85
44
67.0
49.6 | 80
41
66.0
45.6 | 69
34
61.6
45.6 | 66
27
56.1
36.6 | 69
28
55.0
36.6 | 67
36
58.6
46.4 | 72
34
59.5
42.3 | 62
32
57.8
41.2 | 66
36
60.6
44.3 | 69
41
62.6
46.4 | 70
63.1
46.8 | 79
42
67.3
51.8 | 71
40
65
49 | | FORT ROSS | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 74
43
65.2
47.2
56.2 | 74
45
64.4
49.2
56.8 | 58.3
84
46
69.1-
51.7
60.4 | 55.8
86
42
69.7
48.8
59.3 | 53.6
75
39
62.6
48.4
55.5 | 46.4
67
29
56.2
39.5
47.9 | 45.8
66
33
55.5
40.3
47.9 | 52.5
71
40
58.8
48.3
53.6 | 50.9
71
38
60.6
44.1
52.4 | 49.5
76
36
60.4
41.7
51.1 | 52.5
69
36
61.0
44.0
52.5 | 54.5
73
42
65.1
47.5
56.3 | 55.0
73
44
65.3
47.7
56.5 | 59.6
85
45
68.8
51.7
60.3 | 57
85
42
69
51
60 | | POINT ARENA | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 75
47
63.8
49.6
56.7 | 74
47
65.0
49.3
57.2 | 89
48
71.3
52.1
61.7 | 84
41
68.3
49.6
59.0 | 79
40
63.8
47.1
55.5 | 68
29
56.9
38.1
47.5 | 75
31
55.3
40.3
47.8 | 70
38
58.2
46.6
52.4 | 69
37
58.7
44.1
51.4 | 77
35
60.2
41.3
50.8 | 69
38
62.7
47.0
54.9 | 68
42
63.8
49.1
56.5 | 74
46
65.9
49.6
57.8 | 91
47
71.5
53.2
62.4 | 77
42
68
51
59 | | USSIAN RIVER F9 | | | | | | | | | | | | | | | | | | CLOVERDALE 3 SSE | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 103
46
92.9
53.5
73.2 | 105
46
94.0
52.1
73.1 | 102
48
88.8
53.5
71.2 | 90
45
82.1
50.6
66.4 | 94
35
71.5
46.3
58.9 | 80
26
59.0
34.3
46.7 | 82
23
56.2
33.6
44.9 | 78
34
62.1
45.5
53.8 | 85
38
66.6
43.2
54.9 | 89
39
74.8
44.0
59.4 | 89
37
75.3
47.3
61.3 | 104
44
87.0
52.2
69.6 | 103
46
90.9
51.6
71.3 | 104
48
85.2
54.4
69.8 |
103
47
87
53
70 | | COYOTE DAM | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 103
48
93.3
53.2
73.2 | 106
46
98.3
53.0
75.6 | 102
46
92.8
49.5
71.2 | 88
36
78.8
42.1
60.4 | 90
31
70.0
40.2
55.1 | 74
21
54.9
28.8
41.9 | 75
22
57.2
27.9
42.6 | 78
27
62.6
40.1
51.4 | 80
29
63.9
37.3
50.6 | 88
29
73.2
36.0
54.6 | 84
30
72.1
37.3
54.7 | 104
39
86.2
45.7
65.9 | 103
46
93.2
50.0
71.6 | 102
42
85.0
48.4
66.7 | 103
36
90
48
69 | | GRATON | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 100
44
86.1
50.7
68.4 | 96
45
86.1
50.0
68.1 | 103
47
86.9
52.7
69.8 | 92
38
82.5
45.4
64.0 | 92
32
68.2
44.1
56.2 | 80
26
57.2
33.7
45.4 | 77
25
54.2
34.2
44.2 | 76
33
60.9
46.6
53.8 | 82
32
65.8
41.1
53.5 | 90
32
74.2
39.7
57.0 | 97
33
76.5
43.9
60.2 | 103
40
85.8
49.0
67.4 | 105
42
84.3
49.8
67.1 | 105
43
84.3
49.8
67.1 | 105
43
82
52
67 | | GRATON 1 W | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 97
41
84.0
48.1
66.1 | 96
42
84.0
47.0
65.5 | 100
44
84.6
49.8
67.2 | 89
37
80.5
43.7
62.1 | 90
30
67.9
42.9
55.4 | 78
20
57.6
33.1
45.4 | 76
24
55.4
33.5
44.5 | 76
30
61.2
44.6
52.9 | 80
32
65.0
40.9
53.0 | 86
30
72.6
37.4
55.0 | 93
33
73.8
42.7
58.3 | 100
39
84.3
46.3
65.3 | 43

 | 103
42
82.5
49.7
66.1 | 101
37
84
46
65 | | HEALDSBURG | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 104
47
91.8
52.6
72.2 | 105
48
93.0
51.9
72.5 | 103
50
90.0
54.8
72.4 | 93
44
84.0
49.3
66.7 | 96
35
71.0
45.4
58.2 | 83
26
60.4
35.9
48.2 | 82
26
56.7
36.1
46.4 | 80
36
65.0
47.4
56.2 | 87
35
69.5
43.4
56.5 | 92
39
76.9
44.6
60.8 | 93
39
78.4
47.4
62.9 | 101
47
88.9
53.3
71.1 | | 108
48
86.6
55.5
71.1 | 105
46
87
54 | | INVERNESS MERY | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 87
46
71.8
51.0
61.4 | 85
42
75.1
50.6
62.9 | 94
48
74.4
54.4
64.4 | 94
40
72.9
47.9
60.4 | 82
36
65.9
46.6
56.3 | 79
26
58.1
36.8
47.5 | 74
28
57.3
36.5
46.9 | 80
36
64.0
47.2
55.6 | 78
34
64.1
42.3
53.2 | 80
34
66.0
40.9
53.5 | RE | | | | | | KNIGHTS VALLEY | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 98
42
91.6
50.5
71.1 | 102
39
92.0
46.7
69.4 | 99
41
87.3
48.9
68.1 | | 90
27
68.6
39.4
54.0 | 83
20
59.1
31.4
45.3 | 82
20
57.2
29.9
43.6 | 72
30
63.1
41.8
52.5 | | | | | | | 99
32
87
44
66 | | POTTER VALLEY POWERHOUSE | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 101
47

 | 105
46

 | 103
45

 | 89
35
79.2
41.9
60.6 | 90
26
70.5
37.5
54.0 | 78
19
57.5
25.7
41.6 | 82
16
58.3
27.8
43.1 | 80
27
64.6
39.3
52.0 | 84
26
68.4
36.6
52.5 | 90
28
76.3
36.8
56.6 | 87
32
77.0
41.8
59.4 | 104
39
89.2
48.1
68.7 | 104
46
95.6
52.6
74.1 | 103
41
87.0
51.9
69.5 | 100
37
90
48
69 | | SANTA ROSA SEWAGE PLANT | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 94
45
80.3
49.9
65.1 | 95
42
82.0
49.7
65.8 | 100
36
82.4
51.3
66.8 | 91
36
80.8
44.0
62.4 | 94
30
68.8
42.5
55.7 | 81
25
58.2
31.1
44.6 | 32.3 | 75
32
61.8
44.7
48.6 | 81
32
64.6
41.0
52.8 | 88
34
71.3
40.9
56.1 | 89
29
71.9
44.6
58.3 | 100
44
81.6
48.7
65.2 | 100
45
82.1
49.8
66.0 | 103
47
79.4
52.6
66.0 | 98
43
82
50
66 | | SANTA ROSA | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 97
45
85.7
50.9
68.3 | 100
47
88.1
50.6
69.4 | 100
48
87.0
53.3
70.2 | 91
41
82.9
46.2
64.6 | 92
33
70.3
44.3
57.3 | 83
27
59.7
34.7
47.2 | 74
23
56.6
34.5
45.6 | 78
32
64.7
46.7
55.7 | 84
33
68.8
41.7
55.3 | 88
35
74.5
41.7
58.1 | 92
37
75.6
45.3
60.5 | 100
45
84.7
50.3
67.5 | 101
46
86.8
50.7
68.8 | 104
47
83.1
54.0
68.6 | 101
42
84
51
68 | | UKIAH | MAXIMUM
MINIMUM
AVG MAX
AVG MIN
AVERAGE | 104
50
94.8
56.1
75.5 | 109
50
99.3
55.8
77.6 | 105
49
92.1
53.8
73.0 | 90
37
79.5
45.5
62.5 | 92
30
69.0
42.5
55.8 | 79
24
58.0
32.3
45.2 | 76
24
56.5
33.9
45.2 | 80
35
64.8
44.6
54.7 | 86
31
67.6
40.6
54.1 | 90
32
75.0
39.9
57.5 | 93
35
75.5
45.1
60.3 | 106
44
87.3
52.1
69.7 | | 107
45
87.3
54.1
70.7 | 103
40
89
51 | ## TABLE A-3 (Cont.) TEMPERATURE DATA Temperature in Degrees Fahrenheit Station Name July Aug Sept Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep* NORTH COASTAL AREA RUSSIAN RIVER F9 MAXIMUM MINIMUM AVG MAX AVG MIN AVERAGE 94 45 82.3 51.2 66.8 81 29 64.6 40.0 52.3 95 36 74.8 47.3 61.5 WOODACRE #### TABLE A-4 #### EVAPORATION DATA The definition of terms and the abbreviations used in connection with Table A-4 are as follows: EVAP The total amount of water evaporated from the pan in inches for the month. WIND The amount of movement of air over the pan in miles for the month. AVG MAX The arithmetic average of daily maximum water temperatures in degrees Fahrenheit for the month. AVG MIN The arithmetic average of daily minimum water temperatures in degrees Fahrenheit for the month. Record incomplete. RB Record began. RE Record ended. # TABLE A-4 (Cont.) EVAPORATION DATA Evappration in Inches Wind in Total Miles Water Temperature in Degrees Fahrenheit | | Tatal
July 1 | | | 19 | 57 | | | | | | | 1968 | | | | | Total
Oct | |--
---|---|-----------------------------------|------------------------------------|--|--|----------------------|--|------------------------------|--|--|--|--|---|--|--|---------------------------| | | June 30 | July | Aug | Sept | Oct | Nov | Dec | Jan. | Feb. | Mar | Apr | Моу | June | July | Aug | Sept | Sept 3 | AP
ND | | 6.64
3150 | 6.03 | 5.13
2314 | 7.37
3315 | RE
RE | | | | | | | | | | | | | AP
ND
G MAX
G MIN | 64.66
56960
 | 8.87
5225 | 6.11
4538
 | 6.11
3869
 | 5.86
3783 | 3.02
3610 | 2.32
3914
 | 2.54
4571
58.0
38.1 | 2.34
3763
65.4
48.2 | 4.47
4765
67.9
44.3 | 6.21
5698
71.0
45.3 | 7.97
6572
74.2
48.2 | 8.84
6652
77.6
51.7 |

 | 7.74
4942
78.3
53.9 | 7.14
4522
71.4
49.8 | AP | 72.31 | 11.25 | 10.77 | 7.37
| 5.48 | 2.54 | 1.36 | 1.71 | 1.83 | 4.35 | 6.57 | 8.36 | 10.72 | 11.76 | 10.33 | 8.05 | 73.00 | AP
ND
G MAX
G MIN | 64.78
25886 | 9.43
2285
84.6
56.3 | 7.95
881
84.6
55.9 | 6.32
2040
84.1
56.5 | 4.64
1565
80.4
51.3 | 2.02
1183
69.9
48.3 | 1.99
2567
 | 2.29
1774
 | 1.51
1525
 | 3.49
1771
 | 6.50
2402
81.7
50.3 | 8.44
4123
79.1
50.2 | 10.20
3770
84.6
54.7 | 9.09

85.6
56.9 | 7.97
3091
83.4
57.9 | 7.27
2849
83.5
57.5 | 65.4 | | AP
ND | 62.14
28944 | 9.15
2448 | 7.23
2366 | 7.84
2175 | 4.36
1882 | 2.55 | 2.92 | 1.70
2040 | 1.60 | 5.26
2481 | 5.74
2704 | 6.28
2571 | 7.51
2695 | 10.18 | 7.00
2621 | 6.94;
2451 | 62.04 | AP
ND | 81.74
33920 | 11.46
1880 | 11.67
2090 | 8.91
2270 | 6.38 | 3.40 | 2.94
3500 | 1.92 | 2.05 | 4.27
2650 | 7.79
3180 | 8.62
4210 | 12.33
3940 | 12.53
4290 | 10.90
3950 | 9.23
3350 | 82.36
38270 | | AP
ND | 67.49
36759 | 9.69
3128 | 8.22
2702 | 6.76
2509 | 5.18
2612 | 2.75
2310 | 2.25 | 1.62
3166 | 1.63
2101 | 4.20 | 7.16
3946 | 7.99
4265 | 10.04
3837 | 9.74
3623 | 8.38
3739 | 7.22
3247 | 68.16
39029 | AP
ND | 60.82 | 9.48
968 | 8.25
823 | 6.23
780 | 4.35 | 2.23 | 1.97 | 1.48 | 1.32 | 3.84 | 5.60
1283 | 7.08 | 8.99 | 9.02 | 7.71
973 | 6.52 | 60.11 | | AP
ND | 69.74
20256 | 10.64 | 9.53
1492 | 7.56
1516 | 4.51 | 3.02
1333 | 2.16 | 1.54 | 1.61 | 4.31 | 6.70 | 7.62 | 10.54 | 10.44 | 8.53
1810 | 7.89 | 68.83 | | AP
ND | 55.30
8269 | 8.28
636 | 7.91
507 | 5.71
483 | 3.99
419 | 2.21
598 | 1.81 | 1.42 | 1.47 | 3.59 | 5.17
755 | 5.61 | 8.13
740 | 8.63
591 | 7.26
757 | 6.23
653 | 55.32
8644 | | | | | | | | | | | | | | • | | | | | | | AP
ND
G MAX
G MIN |
 | 7.89

89.3
60.6 | 5.45
671
87.7
59.7 | 5.28
738
85.7
61.0 | 2.78
696
74.4
55.4 | 1.32
550
64.5
52.9 | 1315
55.0
42.4 | 0.95
879
 | 0.85
602
57.0
46.4 | 3.02
1005
66.1
45.0 | 5.49
1125
77.4
49.0 | 6.91
2215
78.8
52.3 | 8.58
2609
82.1
55.8 | 8.80
2556
83.3
56.8 | 6.73
2090
81.9
59.7 | 6.22
1887
80.7
56.3 | 17529 | AP
ND
G MAX | 71.95 | 97.0 | 97.0 | 91.9 | 4.33
78.7 | 64.0 | 50.1 | 50.4 | 61.3 | 3.23 | 75.0 | 78.8 | | 13.58 | 8.36
1684
82.4 | 8.09
1604
83.5 | 69.83 | | AP | 53.59
25987 | 7. 9 9 | 6.04 | 4.66 | 5.09 | 2.79 | 1.64 | 1.08 | 1.37 | 2.81 | 4.94 | 6.95 | 8.59 | 6.80 | 5.64 | 5.50 | 53.20 | | AP
ND
G MAX | | 6.90

96.5
63.2 | 7.62

93.1 | 5.31
666
87.3 | 4.82
623
76.7 | 3.18
456
65.0 | 3.11
1417
54.8 | 1.26
812
52.2 | 3.05 | | 5.44
1169
79.3 | 5.61
995
 | | | | 4.82 | | | AP
ND | 62.92
24355 | 8.51
2736 | 7.89
2574 | 6.31 | 5.04 | 2.35
1155 | 2.16 | 1.38 | 1.37 | 3.69 | 6.37 2293 | 7.41
2738 | 10.40 | 9.36 | 7.19
2714 | 7.49 | 64.25 | | THE PERSON AND ADDRESS OF A PROPERTY O | AP ND G MAX G MIN AP ND G MAX G MIN AP ND | AP 64.66 ND 56960 G MAX G MIN AP 72.31 AP 72.31 AP 72.31 AP 64.78 AP 62.14 AP 28944 AP 81.74 AP 33920 AP 67.49 AP 36759 AP 60.82 AP 11736 AP 69.74 AD 20256 AP 55.30 AP 69.74 AD 20256 AP 55.30 AP 69.74 AP G MAX G MIN AP 71.95 AP G MAX G MIN AP 53.59 AP 62.92 | AP 64.66 8.87 ND 56960 5225 G MAX | AP 64.66 8.87 6.11 56960 5225 4538 | AP 64.66 8.87 6.11 6.11 56960 5225 4538 3869 | AP 64.66 8.87 6.11 6.11 5.86 S.0 56960 5225 4538 3869 3783 | AP 64.78 | AP 64.66 8.87 6.11 6.11 5.86 3.02 2.32 S MAX | NP | NP 64.66 8.87 6.11 6.11 5.86 3.02 2.32 2.54 2.34 ND 56960 5.225 4538 3869 3783 3610 3914 4571 3763 5.48X | THE COLOR OF SETS AS A SET OF SETS AS A SET OF SETS AS A | THE STATE OF | TO 3150 2949 2314 3315 RE AP 64.66 8.87 6.11 6.11 5.86 3.02 2.32 2.54 2.34 4.47 6.21 7.97 6.35 5698 6572 6580 5225 4538 3869 3783 3610 3914 6571 3763 4765 5698 6572 710 74.2 111 | THE CASE OF STATE | AP 64.78 9.43 7.95 6.32 4.64 2.02 1.99 2.29 1.51 3.69 6.50 8.46 10.20 9.09 11.76 | No. 3150 2949 2316 3315 RE | No 3150 2969 2314 3315 RE | Appendix B SURFACE WATER MEASUREMENTS #### INTRODUCTION In this appendix, surface water data are presented for the period October 1, 1967, through September 30, 1968. These data consist of imported water to the report area, daily mean gage heights, and daily maximum and minimum tides. Data station locations are shown on Figure D-1, pages 64, 65, 66, and 67. The station numbering system is that which is shown in the departmental publication "Index of Stream Gaging Stations in and Adjacent to California", 1966. TABLE B-1 SURFACE WATER IMPORTS TO THE CENTRAL COASTAL AREA | IMPORT | | | | | | 1968 Wat | er Year | | | | | | TOTAL | |---|----------------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------| | TLEOKT | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | OCTSEP
ACRE-FEE | | CITY OF VALLEJO FROM CACHE SLOUGH a | | | | | | | | | | | | | | | Total acre-feet
Average cubic feet per second
Monthly quantities in percent of seasonal | 927
15
7.5 | 645
11
5.3 | 478
8
3.9 | 575
9
4.7 | 352
6
2.8 | 718
12
5.9 | 1268
21
10.4 | 1456
24
11.9 | 1454
24
11.9 | 1488
24
12.2 | 1506
24
12.3 | 1367
23
11.2 | 12234
17 | | CONTRA COSTA CANAL b * | | | | | | | | | | | | | | | Total acre-feet
Average cubic feet per second
Monthly quantities in percent of seasonal | 6228
101
6.5 | 5462
92
5.7 | 4869
79
5.1 | 5602
91
5.8 | 3466
60
3.6 | 3158
51
3.3 | 7752
130
8.0 | 9754
159
10.1 | 13318
224
13.8 | 13778
224
14.3 | 11925
194
12.4 | 11030
185
11.4 | 96342
133 | | HETCH HETCHY AQUEDUCT c | | | | | | | | | | | | | | | Total acre-feet
Average cubic feet per second
Monthly quantities in percent of seasonal | 9451
154
5.2 | 4289
72
2.3 | 18822
306
10.3 | 1480
24
0.8 | 1389
24
0.8 | 14334
233
7.8 | 25341
426
13.8 | 26396
429
14.4 | 20975
352
11.4 | 21070
343
11.5 | 20412
332
11.1 | 19511
328
10.6 | 183470
253 | | MOKELUMNE RIVER AQUEDUCT d | | | | | | | | | | | | | | | Total acre-feet
Average cubic feet per second
Monthly quantities in percent of seasonal | 6636
108
3.1 | 17011
286
8.0 | 17642
287
8.3 | 17460
284
8.2 | 15701
273
7.4 | 17782
289
8.4 | 18026
303
8.5 | 18789
306
8.9 | 18402
309
8.7 | 21437
349
10.4 | 22044
358
10.4 | 21156
356
10.0 | 212086
292 | | POTTER VALLEY POWERHOUSE FROM EEL RIVER e | | | | | | | | | | | | | | | Total acre-feet
Average cubic feet per second
Monthly quantities in percent of seasonal | 16320
265
10.1 | 10580
178
6.6 | 17950
292
11.2 | 18710
304
11.6 | 17480
304
10.9 | 18580
302
11.5 | 11450
192
7.1 | 4530
74
2.8 | 6600
111
4.1 | 12990
211
8.1 | 13030
212
8.1 | 12650
213
7.9 | 160870
222 | | PUTAH SOUTH CANAL b ** | | | | | | | | | | | | | | | Total acre-feet
Average cubic feet per second
Monthly quantities in percent of seasonal | 26651
433
12.1 | 8471
142
3.8 | 200
3
0.I | 627
10
0.3 | 627
11
0.3 | 2553
42
ì.2 | 15592
262
7.I | 30228
492
13.7 | 31182
524
14.1 | 36422
592
16.5 | 34596
563
15.7 | 33388
561
15.1 | 220537
304 | | SOUTH BAY AQUEDUCT | | | | | | | | - 1 | | | | | | | Total acre-feet
Average cubic feet per second
Monthly quantitles in percent of seasonal | 8169
133
8.0 | 5503
92
5.4 | 6645
108
6.5 | 7991
130
7.8 | 3539
62
3.5 | 6692
109
6.5 | 9667
162
9.4 | 18291
167
10.0 | 10814
182
10.5 | 11986
195
11.7 | 11792
192
11.5 | 9443
159
9.2 | 102532
141 | | | | | | | | | | | | | | | | a Data furnished by City of Vallejo. b Data furnished by U. S. Bureau of Reclamation. c Data furnished by the City of San Francisco. d Data furnished by East Bay Municipal Utility District. e Data furnished by U. S. Geological Survey. ^{*} A portion of this water is delivered to the Central Coastal Area by the Contra Costa County Water District. ^{**} A portion of this water is delivered to the Central Coastal Area by the Solano Irrigation District. # TABLE B- 2 DAILY MEAN GAGE HEIGHT (IN FEET) | | STATION NO. | STATION NAME | | |------|-------------|----------------------------------|--| | 1968 | E31400 | RECTOR RESERVOIR NEAR YOUNTVILLE | | | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|--------|------| | , | 355.52 | 354.10 | 354.40 | 355.83 | 370.45 | 370.35 | 370.28 | 370.06 | 367.08 | 363.10 | NR | NR | 1 | | 2 | 355.46 | 354.08 | 354.40 | 355.83 | 370.49 | 370.35 | 370.28 | 370.06 | 366.92 | 363.93 | NR | NR | 2 | | 3 | 355.40 | 354.06 | 354.57 | 355.83 | 370.49 | 370.35 | 370.27 | 369.96 | 366.77 | 362.80 | NR | 354.80 | 3 | | 4 | 355.41 | 354.05 | 354.66 | 355.87 | 370.47 | 370.33 | 370.27 | 369.96 | 366.66 | 362.69 | NR | 354.70 | 4 | | 5 |
355.43 | 354.05 | 354.92 | 355.88 | 370.44 | 370.33 | 370.27 | 369.96 | 366.53 | 362.55 | NR | 354.60 | 5 | | 6 | 355.43 | 354.05 | 354.98 | 355.91 | 370.44 | 370.33 | 370.22 | 369.96 | 366.42 | 362.43 | NR | 354.48 | 6 | | 7 | 355.37 | 354.06 | 355.17 | 355.95 | 370.44 | 370.36 | 370.20 | 369.89 | 366.28 | 362.42 | NR | 354.35 | 7 | | R | 355.26 | 354.07 | 355.25 | 355.99 | 370.45 | 370.36 | 370.18 | 369.76 | 366.16 | 362.21 | NR | 354.24 | 8 | | 9 | 355.13 | 354.08 | 355.31 | 356.05 | 370.45 | 370.35 | 370.16 | 369.65 | 366.04 | 362.05 | NR | 354.12 | 9 | | 10 | 355.11 | 354.06 | 355.32 | 356.70 | 370.43 | 370.32 | 370.14 | 369.55 | 365.92 | 361.91 | NR | 354.00 | 10 | | 11 | 355.11 | 354.07 | 355.36 | 357.02 | 370.42 | 370.32 | 370.13 | 369.44 | 365.76 | 361.75 | NR | 353.85 | 11 | | 12 | 355.11 | 354.07 | 355.34 | 358.20 | 370.41 | 370.60 | 370.13 | 369.34 | 365.65 | 361.62 | NR | 353.74 | 12 | | 13 | 355.10 | 354.08 | 355.33 | 358.33 | 370.40 | 370.48 | 370.10 | 369.24 | 365.52 | 361.52 | NR | 353.63 | 13 | | 14 | 354.97 | 354.10 | 355.31 | 358.73 | 370.37 | 370.50 | 370.08 | 369.17 | 365.38 | 361.39 | NR | 353.51 | 14 | | 15 | 354.79 | 354.11 | 355.31 | 359.73 | 370.36 | 370.49 | 370.07 | 369.07 | 365.23 | 361.24 | NR | 353.36 | 15 | | 16 | 354.68 | 354.11 | 355.32 | 360.16 | 370.45 | 370.60 | 370.06 | 368.99 | 365.12 | 361.12 | NR | 353.19 | 16 | | 17 | 354.66 | 354.12 | 355.36 | 360.45 | 370.47 | 370.51 | 370.06 | 368.89 | 364.96 | 360.91 | NR | 353.05 | 17 | | 18 | 354.51 | 354.13 | 355.50 | 360.67 | 370.42 | 370.41 | 370.04 | 368.80 | 364.85 | 360.78 | NR | 352.96 | 18 | | 19 | 354.48 | 354.16 | 355.52 | 360.82 | 370.62 | 370.38 | 370.04 | 368.65 | 364.73 | 360.66 | NR | 352.85 | 19 | | 20 | 354.48 | 354.18 | 355.55 | 360.96 | 370.52 | 370.37 | 370.02 | 368.56 | 364.71 | 360.53 | NR | 352.70 | 20 | | 21 | 354.46 | 354.21 | 355.59 | 361.09 | 370.57 | 370.35 | 370.00 | 368.49 | 364.47 | 360.37 | NR | 352.57 | 21 . | | 22 | 354.46 | 354.22 | 355.62 | 361.20 | 370.57 | 370.33 | 369.99 | 368.30 | 364.30 | 360.26 | NR | 352.45 | 22 | | 23 | 354.46 | 354.21 | 355.63 | 361.28 | 370.41 | 370.33 | 369.99 | 368.20 | 364.19 | 360.14 | NR | 352.32 | 23 | | 24 | 354.34 | 354.21 | 355.68 | 361.36 | 370.36 | 370.32 | 369.98 | 368.08 | 364.07 | 359.98 | NR | 352.19 | 24 | | 25 | 354.21 | 354.22 | 355.72 | 361.44 | 370.34 | 370.31 | 369.97 | 367.98 | 363.91 | 359.86 | NR | 352.06 | 25 | | 26 | 354.20 | 354.24 | 355.74 | 361.52 | 370.33 | 370.30 | 369.99 | 367.88 | 363.77 | 359.03 | NR | 351.81 | 26 | | 27 | 354.18 | NR | 355.75 | 361.59 | 370.32 | 370.30 | 370.01 | 367.78 | 363.68 | 359.60 | NR | 351.66 | 27 | | 28 | 354.18 | NR | 355.77 | 361.68 | 370.32 | 370.29 | 370.01 | 367.68 | 363.51 | 359.47 | NR | 351.54 | 28 | | 29 | 354.17 | NR | 355.79 | 371.42 | 370.33 | 370.28 | 370.01 | 367.56 | 363.37 | 359.35 | NR | 351.44 | 29 | | 30 | 354.16 | NR | 355.79 | 370.62 | | 370.28 | 370.02 | 367.43 | 363.21 | 359.21 | NR | 351.31 | 30 | | 31 | 354.14 | | 355.81 | 370.52 | | 370.28 | | 367.31 | | 359.09 | NR | | 31 | ### MAXIMUM INSTANTANEOUS GAGE HEIGHTS E - ESTIMATED NR - NO RECORD NF - NO FLOW | DATE | TIME | STAGE | |---------|------|--------|------|------|-------|------|------|-------|------|------|-------| | 1-30-68 | 0100 | 371.44 | LOCATIO | N | MA | XIMUM DISCHA | RGE | PERIOD (| OF RECORD | | DATU | M OF GAGE | | |----------|-----------|------------------|-----|--------------|------|-----------|---------------|------|------|-----------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | IOD | ZERO | REF. | | CXIIIONE | LONGITUDE | M.D.B.&M. | CFS | GAGE HT. | DATE | DISCHARGE | ONLY | FROM | ТО | GAGE | DATUM | | 38 26 24 | 122 20 36 | SE 19 7N 4W | | | | | MAY 1948-DATE | 5-48 | | 0.00 | USCGS | Rector Reservoir is located on Rector Creek about 3 miles northeast of Yountville. Gaging station is located on the outlet tower of the reservoir. Elevation of reservoir floor is 250 feet. Spillway elevation is 370 feet. # TABLE B-3 DAILY MAXIMUM AND MINIMUM TIDES SACRAMENTO RIVER AT COLLINSVILLE in feet B91110 1968 | DATE | ост. | NOV | DEC | JAN. | FEB. | MAR. | APR | MAY | JUNE | JULY | AUG | SEP | DATE | |---------|--------------|--------------|----------------|----------------|--------------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|---------| | | 6.13
1.75 | 6.07 | 6.67 | 6.58
1.30 | 5.58
2.76 | NR
NR | 6.17 | 5.87
1.34 | 5.62
1.19 | 5.31
1.52 | 5.94
2.28 | 6.49 | | | 2 | 6.04
1.83 | 6.50
1.62 | 6.67 | 6.27
1.30 | 5.39
1.59 | NR
NR | 5.85
1.76 | 5.72
1.30 | 5.19
1.19 | 5.29
1.66 | 6.23
2.04 | 6.48 | 2 | | 3 | 6.02
1.19 | 6.75
1.71 | 7.13
1.69 | 5.67
3.07 E | 5.47
1.90 | NR
NR | 5.34
1.33 | 5.78
1.54 | 4.93
1.18 | 5.55
1.76 | 6.46
1.84 | 5.10
1.80 | 3 | | 4 | 6.00
1.83 | 6.84
3.46 | 6.94
3.87 | 5.02
1.11 E | 5.38
2.00 | NR
NR | 5.12
1.28 | 5.47
1.42 | 5.48
1.53 | 5.89
2.13 | 6.63
1.68 | 6.55
1.94 | 4 | | 5 | 6.09
1.54 | 6.58
1.68 | 6.21 | 5.00
1.14 E | 5.40
2.28 | NR
NR | 5.08
1.42 | 5.01
1.45 | 5.52
1.92 | 6.44 | 6.67
1.59 | 6.33
1.81 | 5 | | 6 | 6.14
2.38 | 6.10
1.47 | 5.63
1.33 | 4.98
1.37 | 5.64
2.26 | NR
NR | 4.62
0.95 | 4.86
1.04 | 5.76
1.93 | 6.85 | 4.75
1.53 | 6.17
1.95 | 6 | | 7 | 6.17
1.41 | 6.02
1.25 | 5.68
1.57 | 5.02
1.49 | 5.86
2.09 | NR
NR | 4.64 | 4.68
1.32 | 4.30
1.60 | 6.97
1.96 | 6.64
1.62 | 5.91
1.99 | 7 | | 8 | 6.14
1.38 | 5.35
1.56 | 5.14
1.43 | 5.14
1.67 | 6.06
1.99 | 5.93
2.25 | 4.97
1.02 | 5.24
1.97 | 6.06
1.46 | 6.97 | 6.58
1.76 | 5.61
2.10 | 8 | | 9 | 6.00
1.33 | 5.10
1.32 | 5.12
1.37 | 5.59
1.82 | 6,17
1,82 | 5.52
1.56 | 5.08
1.06 | 5.62
2.13 | 6.48 | 7.05
1.69 | 6.38
1.72 | 5.56
2.24 | 9 | | 10 | 5.63
1.44 | 5.15
1.36 | 5.24
1.67 | 6.77
2.10 | 6.34
1.75 | 5.37
1.25 | 5.22
1.40 | 5.83
1.82 | 6.61
1.28 | 6.90
1.59 | 6.08
1.81 | 5.63
2.38 | 10 | | 11 | 5.39
1.24 | 5.11
1.42 | 5.57
1.83 | 5.97
1.42 | 6.43
1.70 | 5.65
1.27 | 5.30
1.76 | 6.09
1.68 | 6.74
1.28 | 6.64 | 5.64
1.85 | 5.67
2.17 | 11 | | 12 | 5.30
1.23 | 5.40
1.83 | 5.35
1.30 | 6.02
1.42 | 6.55
1.78 | 6.40
1.99 | 5.79
1.98 | 6.32
1.35 | 6.53
1.08 | 6.34
1.46 | 5.47
2.04 | 5.78
2.07 | 12 | | 13 | 5.03
1.35 | 5.50
1.89 | 5.00
0.52 E | 6.25
1.35 | 6.60
1.85 | 6.29
1.94 | 5.97
1.61 | 6.72
1.45 | 6.24
0.92 | 6.14 | 5.52
2.14 | 5.92
2.13 | 13 | | 14 | 5.23
1,38 | 5.80
1.82 | 5.00
0.60 E | 6.38
1.60 | 6.34
1.76 | 6.03
1.84 | 6.08
1.32 | 6.50
1.03 | 5.94
1.02 | 5.72
1.64 | 5.62
2.36 | 5.74
2.03 | 14 | | 15 | 5.21
1.58 | 5.84
1.67 | 6.53
1.50 | 6.76
1.71 | 6.10
1.87 | 5.66
1,92 | 6.26
1.45 | 6.33
0.97 | 5.65
1.09 | 5.40
1.65 | 5.75
2.19 | 5.53
1.76 | 15 | | 16 | 5.13
1.68 | 5.97
1.61 | 6.45
1.31 | 6.60
1.62 | 6.12
2.21 | 6.03
2.42 | 6.44
1.23 | 6.20
1.11 | 5.21
1.29 | 5.47
1.89 | 6.16
2.08 | 5.46
1.44 | 16 | | 17 | 5.34
1.77 | 6.18
1.64 | 6.52
1.83 | 6.15
1.42 | 6.08
2.35 | 6.34
2.08 | 5.90
0.82 | 5.90
1.08 | 5.34
1.57 | 5.53
2.19 | 5.94
1.98 | 5.90
1.44 | 17 | | 81 | 5.55
1.73 | 6,21
1,65 | 6.86
1.75 | 5.74
2.99 | 5.93
2.46 | 6.06
1.53 | 5.70
0.83 | 5.39
1.10 | 5.58
1.98 | 5.80
1.98 | 6.03
1.77 | 5.15
1.97 | 18 | | 19 | 5.67
1.64 | 6.40 | 6.60
1.57 | 5.38
1.36 | 6.02
2.34 | 5.97
1.28 | 5.56
0.88 | 5.10
1.25 | 5.78
2.43 | 6.05
1.90 | 6.26
1.76 | 6.06
1.95 | 19 | | 20 | 5.75
1.68 | 6.00
3.97 | 6.02
3.76 | 5.20
1.43 | 6.46 | 5.84
1.14 | 5.18
0.96 | 5.24
1.33 | 5.74
2.05 | 6.18 | 6.20
1.73 | 5.97
1.82 | 20 | | 21 | 5.89
3.37 | 6.22
1.44 | 5.10
1.17 E | 5.50
1.61 | 6.80
2.26 | 5.59
0.95 | 4.78
0.83 | 5.39
1.82 | 5.83
1.64 | 6.27
1.78 | 4.70
1.61 | 5.52
1.55 | 21 | | 22 | 5.72
1.62 | 5.82
1.52 | 5.40
0.60 E | 5.77
1.96 | 6.48
1.96 | 5.43
1.11 | 4.61
0.90 | 4.38
2.02 | 4.30
1.46 | ◆ 6.38
1.75 | 5.98
1.43 | 5.37
1.66 | 22 | | 23 | 5.58
1.49 | 5.44 | 4.65
0.60 E | 5.93
1.65 | 6.43
1.88 | 5.46
1.15 | 4.64 | 5.54
1.76 | 6.07
1.52 | 6.38 | 5.92
1.47 | 5.40
1.75 | 23 | | 24 | 5.41
1.35 | 5.03
1.35 | 4.98
0.88 E | 6.20
1.63 | NR
NR | 5.35
1.07 | 4.86
1.50 | 5,65
1,55 | 6.31
1.64 | 6.38
1.57 | 5.88
1.64 | 5.68
1.68 | 24 | | 2.5 | 5.21
1.30 | 5.14
1.35 | 5.40
1.41 | 6.69
1.78 | NR
NR | 5.58
1.43 | 5.03
1.48 | 5.68
1.29 | 6.44 | 6.35
1.59 | 5.75
1.72 | 6.03
2.49 | 25 | | 26 | 5.14
1.29 | 5.32
1.54 | 5.94
1,69 | 6.98
1.90 | NR
NR | 5.27
1.31 | 5.33
1.37 | 5.64
1.10 | 6.44
1.70 | 6.34 | 5.38
1.77 | 6.23
1.79 | 26 | | 27 | 5.17
1.23 | 5.69
1.78 | 6.12
1.40 | 6.95
1.81 | NR
NR | 5.10
1.44 | 5.57
1.36 | 5.85
1.22 | 6.35
1.56 | 6.28
1.80 | 5.52
1.96 | 6.30
1.84 | 27 | | 28 | 5.20
1.40 | 6.00
1.77 | 6.58
1.49 | 6.79
1.78 | NR
NR | 5.05
1.62 | 5.77
1.49 | 6.10
1.39 | 6.33
1.52 | 6.04
1.90 | 5.70
2.15 | 6.51
1.84 | 28 | | 29 | 5.14
1.27 | 6.66 | 6.76
1.40 | 7.17
2.53 | NR
NR | 5.23
1.68 | 5.82
1.40 | 6.12
1.35 | 5.87
1.15 | 5.63
1.77 | 5.92
1.98 | 6.48
2.12 | 29 | | 30 | 5.20
1.36 | 7.00
1.87 | 6.85
1.40 | 6.72
1.92 | | 5.53
1.80 | 5.93
1.46 | 6.03
1.25 | 5.52
1.22 | 5.60
2.07 | 6.35
1.83 | 5.99
1.85 | 30 | | 31 |
5.54
1.56 | | 6.63
1.27 | 6.20
1.65 | | 5.80
1.97 | | 5.92
1.30 | | 5.71
2.16 | 6.49
2.10 | | 31 | | MAXIMUM | 6.17 | 7.00 | 7.13 | 7,17 | NR | NR | 6.44 | 6.72 | 6.74 | 7.05 | 6.67 | 6,55 | MAXIMUM | | MINIMUM | 1.19 | 1.25 | 0.52 E | 1.11 E | NR | NR | 0.82 | 0.97 | 0.92 | 1.46 | 1.43 | 1.44 | MINIMUM | | E- | Est | moted | | |-----|-----|--------|--| | NR- | No | Record | | | | | | | | CREST : | 314023 | | | | | | |------|------|-------|------|------|---------|--------|------|-------|------|------|-------| | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | OATE | TIME | STAGE | | | LOCATIO | и | M | MAXIMUM DISCHARGE | | PERIOD | PERIOD OF RECORD | | DATUM OF GAGE | | | | |--------------------|-----------------|-------------|---------|-------------------|-----------|-------------|------------------|--------------|---------------|------------------------|------------------------|--| | LATITUDE LONGITUDE | 1/4 SEC. T. & R | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF. | | | | | M.D.8 &M | CFS | GAGE HT | DATE | DISCHARGE | ONLY | FROM | TO | GAGE | DATUM | | | | 38 04 25 | 121 51 18 | SW 27 3N 1E | | 9.2 | 4-6-1958 | | JUNE 1929-DATE | 1929
1929 | 1964 | 0.00
-3.05
-3.54 | USED
USCGS
USCGS | | Station located 0.4 mils couthwest of Collinaville, 3.3 miles northeast of Pitteburg. #### TABLE B-3 (Cont.) DAILY MAXIMUM AND MINIMUM TIDES SUISUN BAY AT BENICIA in feat STATION NO YEAR E03300 1968 | DATE | ост | NOV | DEC | JAN. | FE8. | MAR | APR | MAY | JUNE | JULY | AUG | SEP | DATE | |---------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------| | 1 | 3.40
-2.36 | 3.62
-2.64 | 4.17 | 3.97
-3.11 | 2.83
-3.74 | 3.20
-1.42 | 3.45
-1.47 | 3.02
-2.60 | 2.71
-2.77 | NR
NR | 3.20
-1.45 | 3.62
-2.27 | 5 | | 2 | 3.30
-2.23 | 4.05
-2.76 | 4.11
-3.28 | 3.60
-3.11 | 2.60
-2.22 | 3.28
-1,10 | 3.07
-2.21 | 2.79
-2.61 | 2.31
-2.75 | NR
HR | 3.47
-1.64 | 3.63
-2.36 | 2 | | 3 | 3.35
-2.15 | 4.25
-2.80 | 4.55
-2.90 | 2.92
-3.18 | 2.70
-1.76 | 3.05
-1.38 | 2.49
-2.50 | 2.69
-2.45 | 2.13
-2.65 | NR
NR | 3.65
-2.22 | 3.72
-2.41 | 3 | | 4 | 3.48
-2.32 | 4.20
-2.86 | 4.34
-2.10 | 2.23 | 2.60
-1.22 | 2.70
-1.35 | 2.28
-2.47 | 2.49
-2.46 | 2.65
-2.27 | NR
NR | 3.77
-2.36 | 3.58
-2.38 | 4 | | 5 | 3.60
-2.72 | 3.86
-2.93 | 3.39
-3.02 | 2.33
-2.43 | 2.52
-1.23 | 2.88
-1.31 | 2.15
-2.38 | 2.16
-2.50 | RR
NR | NR
NR | 3.95
-2.64 | 2.39
-2.53 | 5 | | 6 | 3.60
-2.84 | 3.40
-2.94 | 2.83
-2.52 | 2.33 | 2.67
-1.33 | NR
NR | 1.84 | 2.19
-2.72 | NR
NR | NR
NR | 4.03
-2.85 | 3.45
-2.34 | 6 | | 7 | 3.60
-2.78 | 3.20
0.70 | 2.93
0.17 | 2.34 | 2.81 | NR
NR | 1.82 | 2.59
-2.39 | NR
NR | NR
NR | 2.20
-2.76 | 2.97
-2.36 | 7 | | 8 | 3.45
-2.61 | 2.56
-2.50 | 2.39
-2.53 | 2.41
-1.79 | 3.04
-1.98 | NR
NR | 2.19
-2.89 | 2.92
-1.92 | NR
NR | NR
NR | 3.91
-2.66 | 2.60
-2.18 | 8 | | 9 | 3.15
0.50 | 2.39
-2.57 | 2.44 | 2.70 | 3.24
-2.29 | NR
NR | 2.37 | 3.16
-1.68 | NR
NR | NR
NR | 3.63
-2.71 | 2.66
-1.81 | 9 | | 10 | 2.83
-2.61 | 2.50
-2.46 | 2.54
-1.78 | 3.81
-1.84 | 3.43
-2.49 | NR
NR | 2.73
-2.58 | 3.50
-2.31 | NR
NR | NR
NR | 3.32
-2.57 | 2.78
-1.89 | 10 | | 11 | 2.57
-2.75 | 2.58
-2.25 | 2.83 | 3.09
-2.52 | 3.61
-2.60 | NR
NR | 2.65
-2.13 | 3.81
-2.77 | NR
NR | NR
NR | 2.83
-2.33 | 2.74
-1.80 | U I | | 12 | 2.48
-2.73 | 2.84 | 2.54 | 3.20
-2.64 | 3.82
-2.61 | NR
NR | 3.20
-2.03 | 3.81
-3.08 | NR
NR | 3.69
-2.96 | 2.70
-1.86 | 2.76
-1.77 | 12 | | 13 | 2.40
-2.61 | 2.93
-1.82 | 2.39 | 3.45
-2.86 | 3.97
-2.59 | NR
NR | 3.41
-2.61 | 4.13
-3.14 | NR
NR | 3.38
-2.61 | 2.83
-1.44 | 2.69
0.35 | 13 | | 14 | 2.50
-2.49 | 3.19
-2.01 | 2.42 | 3.61
-2.70 | 3.80
-2.62 | NR
NR | 3.54
-2.98 | 3.99
~3.58 | NR
NR | 2.96
-2.33 | 2.87
-0.83 | 2.51
-1.79 | 14 | | 15 | 2.47
-2.20 | 3.23
-2.26 | 3.72
-2.68 | 3.99
-2.70 | 3.48
-2.38 | NR
NR | 3.73
-3.09 | 3.73
-3.57 | NR
NR | 2.65
-2.12 | 2.91
-1.39 | 2.39
-2.15 | 15 | | 16 | 2.55 | 3.31 | 3.64 | 3.82 | 3.60
-1.86 | NR
NR | 3.71
-3.23 | 3.51
-3.30 | NR
NR | 2.77 | 3.18
-1.51 | 2.67
-2.43 | 16 | | 17 | 2.74 | 3.51
-2.48 | 3.68
-2.61 | 3.40
-3.04 | 3.53
-1.76 | NR
NR | 3.26
-3.67 | 3.01
-3.18 | NR
NR | 2.83
-1.25 | 2.95 | 3.03
-2.29 | 17 | | 81 | 2.93
-2.19 | 3.50
-2.48 | 4.00
-2.55 | 2.94
-3.01 | 3.30
-1.50 | NR
NR | 2.92
-3.45 | 2.51
-2.97 | NR
NR | 3.02
-1.55 | 3.14
-2.02 | 3.20
-1.99 | 18 | | 19 | 3.00
-2.27 | 3.70
-2.42 | 3.73
-2.70 | 2.55
-2.81 | 3.37
-1.80 | NR
NR | 2.77
-3.15 | 2.42
-2.65 | NR
NR | 3.19
-1.73 | 3.37
-2.04 | 3.14
-2.06 | 19 | | 20 | 3.07
-2.24 | 3.30
-2.54 | 3.21
-3.02 | 2.48
-2.40 | 3.63
-1.91 | NR
NR | 2.36
-3.05 | 2.55
-2.46 | NR
NR | 3.31
-1.96 | 3.46
-2.17 | 2.86
-2.22 | 20 | | 21 | 3.05
-2.32 | 3.40
-2.33 | 2.37
-3.43 | 2.80
-1.80 | 3.86
-2.01 | NR
NR | 2.02
-3.10 | 2.74
-1.80 | NR
NR | 3.38
-2.13 | 3.30
-2.37 | 2.43
-2.38 | 21 | | 22 | 2.85
-2.50 | 3.09
-2.33 | 1.70
-3.27 | 3.11 | 3.48
-2.62 | NR
NR | 2.04
-3.06 | 2.87
-1.66 | NR
NR | 3.49
-2.36 | 3.26
-2.62 | 2.80
-2.21 | 22 | | 23 | 2.79
-2.43 | 2.72
1.00 | 1.99 | 3.24
-2.31 | 3.44
-2.92 | NR
NR | 2.21
-2.63 | 2.92
-2.05 | NR
NR | 3.53
-2.35 | 2.09
-2.64 | 2.95
-2.10 | 23 | | 24 | 2.63
1.01 | 2.30
-2.40 | 2.35
-2.74 | 3.49
-2.45 | 3.53
-2.99 | NR
NR | 2.43
-2.25 | 3.04
-2.42 | NR
NR | 3.56
-2.56 | 3.26
-2.48 | 3.23
-2.23 | 24 | | 25 | 2.37
-2.44 | 2,52
-2,28 | 2.83 | 3.94
-2.40 | 3.54
-3.00 | NR
NR | 2.72
-2.37 | 2.89
-2.76 | NR
NR | 2.00
-2.54 | 3.11
-2.29 | 3.56
-2.19 | 25 | | 26 | 2.34 | 2.79
-2.15 | 3.33 | 4.22
-2.53 | 3.62
-2.81 | NR
NR | 2.99
-2.44 | 3.07
-3.06 | NR
NR | 3.47
-2.54 | 2.74
-2.16 | 3.69
-2.24 | 26 | | 27 | 2.30
-2.53 | 3.20
-1.87 | 3.51
-2.75 | 4.30
-2.70 | 3.69
-2.57 | NR
NR | 3.07
-2.55 | 3.07
-2.96 | NR
NR | 3.43
-2.41 | 2.88
-1.86 | 3.67
-2.17 | 27 | | 28 | 2.40
-2.54 | 3.52
-2.17 | 3.95
-2.90 | 4.22
-2.63 | 3.60
-2.37 | 2.41
-2.34 | 3.00
-2.56 | 3,28
-2,85 | NR
NR | 3.14
-2.30 | 3.18
-1.72 | 3.72
0.79 | 28 | | 29 | 2.50
-2.66 | 4.22
-2.24 | 4.14 | 4.63
-1.60 | 3.20
-2.08 | 2.61
-2.29 | 3.01
-2.73 | 3.28
-2.83 | NR
NR | 2.76
-2.16 | 3.36
-0.78 | 3.54
-1.97 | 29 | | 30 | 2.69
-2.56 | 4.62
-2.65 | 4.22
-3.30 | 4.11
-2.54 | | 2.91
-2.21 | 3.02
-2.75 | 3.19
-2.87 | NR
NR | 2.86
-1.89 | 3.61
-1.93 | 3.18
-2.19 | 30 | | 31 | 3.05
-2.50 | | 4.04
-3.26 | 3.49
-2.84 | | 3.06
-2.18 | | 2.95
-2.76 | | 2.93
-1.61 | 3.56
-2.09 | | 31 | | MAXIMUM | 3.60 | 4.62 | 4.55 | 4.63 | 3.97 | NR | 3.73 | 4.13 | NR | NR | 4.03 | 3.72 | MAXIMUM | | MINIMUM | -2.84 | -2.94 | -3,44 | -3.18 | -3,00 | NR | -3.67 | -3.58 | NR | NR | -2.85 | -2.53 | MINIMUM | E- Estimated NR- No Record CREST STAGES DATE TIME STAGE | | LOCATIO | N | HJ | MAXIMUM DISCHARGE | | PERIOD | PERIOD OF RECORD | | DATUM OF GAGE | | | |--------------------|-----------|------------------|---------------------------|-------------------|----------|-----------|------------------------------|----------------------|---------------|------------------------|-------------------------| | LATITUDE LANCITUDE | | 1/4 SEC. T. & R. | /4 SEC. T. & R. OF RECORD | | 0 | DISCHARGE | GAGE HEIGHT | PER | HOD | ZERO | REF. | | LATITUDE LONGITUDE | LONGITUDE | M.D.8.&M. | CFS | GAGE HT. | DATE | DISCHARGE | ONLY | FROM | TO | GAGE | DATUM | | 38 02 26 | 122 08 13 | SW 6 2N 2W | | 5.7 | 4-6-1958 | | JUN 29-APR 40
APR 40-DATE | 1929
1940
1942 | 1940
1942 | -2.21
-5.00
0.00 | USCGS
USCGS
USCGS | Station located on inshore side of wharf, immediately southeast of Senicia. Maximum gage height listed does not indicate maximum discharge. Period of record intermittant from 1929 to 1940. TABLE 8-4 CORRECTIONS AND REVISIONS TO PREVIOUSLY PUBLISHED REPORTS OF SURFACE WATER DATA | | | | Location of Error or Revision | | Chon | ge or Revision | |------------------------|------|----------------|-----------------------------------|---|------------------|---| | Report | Page | Mile &
Bonk | Name | Îtem | From | То | | | | | | 1962 | | | | Bulletin
No. 23-62 | 394 | | Suisun Bay at Benicia Arsenal | Daily Maximum and Minimum Tides for the period 3-1-62 to 3-28-62, inclusive | Published values | 2.00 feet lower thao published values | | | | | | Maximum for March 1962 | 16.72 | 14.72 | | | | | | <u>1963</u> | | | | Bulletin
No. 130-63 | B-7 | | Suisun Bay at Benicia Arsenal | Maximum Gage Height of Record | 6.72 | 5.7 | | | | | | Date of Maximum Gage Height of
Record | 3-5-62 | 4-6-58 | | | | | | <u>1964</u> | | | | Bulletin
No. 130-64 | 48 | | Suisun Bay at Benicia Arsenal | Maximum Gage Height of Record | 6.72 | 5.7 | | | | | | Date of Maximum Gage Height of
Record | 3-5-62 | 4-6-58 | | Bulletin
No. 130-64 | 52 | | City of Vallejo from Cache Slough | Total
acre-feet | Published values | Values published in Bulletin No. 130-66 Table B-2 | | | | | | Average cubic feet per second | Published values | Values published in
Bulletin No. 130-66
Table B-2 | | | | | | Monthly quantities in percent of seasonal | Published values | Values published in
Bulletin No. 13D-66
Table B-2 | | | | | | <u>1967</u> | ~ | | | Bulletin
No. 130-67 | 44 | | Sacramento River at Collinsville | Daily Maximum and Minimum Tides | | Motation: In order to machine process the data it was necessary to avoid negative gage heights. Subtract 10.00 feet to obtain gage heights. | | Bulletin
No. 130-67 | 45 | | Suisun Bay at Benicia Arsnnal | Daily Maximum and Minimum Tides | | Notation: In order to machine process the data it was necessary to avoid negative gage heights. Subtract 10.00 feet to obtain gage heights. | Appendix C GROUND WATER MEASUREMENTS #### INTRODUCTION This appendix contains ground water level measurements from 373 wells for the period October 1, 1967, through September 30, 1968. It contains tables which summarize the measurements and bar graphs of average depth to water in selected basins. There are 33 ground water basins or areas in the Central Coastal Area for which data are reported. Wells are selected to reflect the ground water conditions of the area. These wells are continuously reviewed, and when conditions dictate, replacement wells are located and measured. Two numbering systems are used by the Department to facilitate processing of water level measurement data. The two systems are the Region and Basin Designation and the State Well Numbering System as described below. The regions used in this report are geographic areas defined in Section 13040 of the Water Code. That portion of Northern California covered by this report comprises the southern portion of North Coastal Region No. 1, the northern portion of Central Coastal Region No. 3, and all of San Francisco Bay Region No. 2. A decimal system of the form 0-00.00 has been selected according to geographic regions, ground water basins, and subbasins or subareas as follows: The State Well Numbering System is based on township, range, and section subdivisions of the public land survey. The number of a well, assigned in accordance with this system, is referred to as the State Well Number, as illustrated below: This number identifies and locates the well. In the example, the well is in Township 17 North, Range 11 West, Tract J of Section 18, located in the Mount Diablo Base and Meridian. A section is divided into 40-acre tracts as follows: | D | С | В | A | |---|---|---|---| | Е | F | G | Н | | M | L | K | J | | N | P | Q | R | Sequence numbers in a tract are generally assigned in chronological order. The example designates the fourth well to be assigned a number in Tract J. # GROUND WATER BASINS OR AREAS IN THE CENTRAL COASTAL AREA | Number | <u>Basin</u> | Page | |--------------------|---|------| | NORTH | COASTAL REGION 1-00.00 (Sheet 1, Figure C-1) | | | 1-14.00 | Potter Valley | 49 | | 1-16.00 | Sanel Valley | 49 | | 1-18.00 | Santa Rosa Valley | 49 | | 1-18.02
1-98.00 | Healdsburg Area | | | SAN FRAN | NCISCO BAY REGION 2-00.00 (Sheet 2, Figure C-1) | | | 2- 1.00 | Petaluma Valley | | | 2- 2.00 | Napa-Sonoma Valley | | | 2- 2.01
2- 2.02 | Napa Valley | | | 2- 3.00 | Sonoma Valley | | | 2- 6.00 | Ygnacio Valley | | | 2- 9.00 | Santa Clara Valley | | | 2- 9.01 | East Bay Area | | | 2- 9.02 | South Bay Area | | | 2-10.00 | Livermore Valley | | | 2-22.00 | Half Moon Bay Terrace | | | 2-24.00 | San Gregorio Valley | | | 2-26.00 | Pescadero Valley | | | CENTRAI | L COASTAL REGION 3-00.00 (Sheet 3, Figure C-1) | | | 3- 1.00 | Soquel Valley | 55 | | 3- 2.00 | Pajaro Valley | . 55 | | 3-3.00 | Gilroy-Hollister Valley | . 55 | | 3- 3.01 | South Santa Clara County | . 55 | | 3-3.02 | San Benito County | . 56 | | 3-4.00 | Salinas Valley | 57 | | 3-4.01 | Pressure Area | 58 | | 3-4.02 | East Side Area | | | 3-4.03 | Forebay Area | | | 3-4.04 | Arroyo Seco Cone | | | 3~ 4.05 | Upper Valley Area | | | 3-4.06 | Paso Robles Basin | | | | Seaside Area | | | 3-4.09 | Langley Area | | | 3-4.10 | Corral De Tierra Area | | | 3-7.00 | Carmel Valley | | | 3-26.00 | West Santa Cruz Terrace | 58 | GROUND WATER BASINS IN THE CENTRAL COASTAL AREA GROUND WATER BASINS IN THE CENTRAL COASTAL AREA GROUND WATER BASINS IN THE CENTRAL COASTAL AREA TABLE C-1 # AVERAGE CHANGE OF GROUND WATER LEVELS AND SUMMARY OF WELL MEASUREMENTS REPORTED #### CENTRAL COASTAL AREA | Ground Water Basin or Ar | ea | Average
Change
Spring 1967
to | Measuring Agency | | umber o
Repor | | |-------------------------------|---------|--|--|--------------------|------------------|----------------| | Name | Number | Spring 1968
in Feet | incusuring injency | Monthly
1967-68 | Fall
1967 | Spring
1968 | | NORTH COASTAL REGION | | | | | | | | Potter Valley | 1-14.00 | -1.0 | Department of Water Resources | | | 2 | | Ukiah Valley | 1-15.00 | -1.9 | Department of Water Resources | | | 2 | | Sanel Valley | 1-16.00 | -2.1 | Department of Water Resources | | | 3 | | Alexander Valley | 1-17.00 | -2.6 | Department of Water Resources | | | 6 | | Santa Rosa Valley | 1-18.00 | -0.4 | | | | | | Santa Rosa Area | 1-18.01 | 0.0 | Department of Water Resources | | | 12 | | Healdsburg Area | 1-18.02 | -2.1 | U. S. Geological Survey | 9 | | | | Lower Russian River
Valley | 1-98.00 | -4.1 | Department of Water Resources | | | 3 | | SAN FRANCISCO BAY REGION | | | | | | | | Petaluma Valley | 2-01.00 | -0.8 | Department of Water Resources | | 3 | 6 | | Napa-Sonoma Valley | 2-02.00 | -1.9 | | | | | | Napa Valley | 2-02.01 | -2.0 | Napa County
Department of Water Resources | | 5 | 115
5 | | Sonoma Valley | 2-02.02 | -1.8 | Department of Water Resources | | 5 | 5 | | Suisun-Fairfield Valley | 2-03.00 | -5.1 | Solano County
Department of Water Resources | | 15
7 | 15
7 | | Ygnacio Valley | 2-06.00 | -3.0 | Department of Water Resources | | 4 | 5 | | Santa Clara Valley | 2-09.00 | +8.1 | | | | | | East Bay Area | 2-09.01 | +3.4 | Alameda County FC&WCD
Alameda County Water District | 3
4 | 6
4 | 6
3 | | South Bay Area | 2-09.02 | +11.1 | Santa Clara Valley WCD
U. S. Geological Survey | 24
3 | | | | Livermore Valley | 2-10.00 | -6.1 | Alameda County FC&WCD | 7 | 4 | 4 | | Half Moon Bay Terrace | 2-22.00 | -1.0 | Department of Water Resources | | 5 | 7 | | San Gregorio Valley | 2-24.00 | +0.1 | Department of Water Resources | | 2 | 5 | | Pescadero Valley | 2-26.00 | -1.7 | Department of Water Resources | | 3 | 7 | #### TABLE C-1 (Continued) ### AVERAGE CHANGE OF GROUND WATER LEVELS AND SUMMARY OF WELL MEASUREMENTS REPORTED #### CENTRAL COASTAL AREA | Ground Water Basin or Ar | ea | Average
Change
Spring 1967 | Measuring Agency | | umber o | _ | |-----------------------------|---------|----------------------------------|---|--------------------|--------------|----------------| | Name | Number | Spring 1968
in Feet | | Monthly
1967-68 | Fall
1967 | Spring
1968 | | ENTRAL COASTAL REGION | • | | | | | | | Soquel Valley | 3-01.00 | -1.1 | Santa Cruz County
Department of Water Resources | 3 | 3 | 3 | | Pajaro Valley | 3-02.00 | +0.9* | Monterey County FC&WCD Department of Water Resources | | 5
6 | 6 | | Gilroy-Holister Valley | 3-03.00 | +1.5 | | | | | | South Santa Clara
County | 3-03.01 | -2.2 | City of Gilroy
Santa Clara Valley WCD
Department of Water Resources | 5
10 | 5 | 7 | | San Benito County | 3-03.02 | +5.2 | San Benito County
Department of Water Resources | | 5 | 2
5 | | Salinas Valley | 3-04.00 | | | | | | | Pressure Area | 3-04.01 | +1.0* | Monterey County FC&WCD | 2 | 5 | | | East Side Area | 3-04.02 | +4.1* | Monterey County FC&WCD | | 1 | | | Forebay Area | 3-04.03 | -0.3* | | | | | | Arroyo Seco Cone | 3-04.04 | +0.5* | Monterey County FC&WCD | 2 | | | | Upper Valley Area | 3-04.05 | -1.8* | Monterey County FC&WCD | 2 | 3 | | | Paso Robles Basin | 3-04.06 | -3.5 | San Luis Obispo FC&WCD | | 40 | 26 | | Seaside Area | 3-04.08 | -0.2* | Post Engineer, Fort Ord | | 2 | 2 | | Langley Area | 3-04.09 | +0.2* | | | | | | Corral de Tierra Area | 3-04.10 | +1.1* | | | | | | Carmel Valley | 3-07.00 | +0.1* | Monterey County FC&WCD | 4 | | | | West Santa Cruz Terrace | 3-26.00 | +2.4 | Santa Cruz County | | 2 | 2 | | TOTAL | | | | 78 | 140 | 271 | ^{*}Average change determined from water level measurements made during fall of 1966 and fall of 1967. AVERAGE DEPTH TO WATER IN WELLS SPRING 1958 TO SPRING 1968 AVERAGE DEPTH TO WATER IN WELLS SPRING 1958 TO SPRING 1968 AVERAGE DEPTH TO WATER IN WELLS SPRING 1958 TO SPRING 1968 AVERAGE DEPTH TO WATER IN WELLS SPRING 1958 TO SPRING 1968 AVERAGE DEPTH TO WATER IN WELLS SPRING 1958 TO SPRING 1968 AVERAGE DEPTH TO WATER IN WELLS SPRING 1958 TO SPRING 1968 An explanation of the column headings and the code symbols follows: State Well Number - Refer to the explanation under Introduction. Ground Surface Elevation - The numbers in this column are the elevations in feet above mean sea level (USGS Datum) of the ground surface at the well. Elevations are usually taken from topographic maps and the accuracy is controlled by topographic standards. Date - The date shown is when the depth measurement given in the next column was made. Ground Surface to Water Surface - This is the measured depth in feet from the ground surface to the water surface in the well; certain of the depth measurements in the column may be preceded by a number in parentheses to indicate a questionable measurement. The code applicable to these "questionable measurements" is as follows: - (1) Pumping - (2) Nearby pump operating - (3) Casing leaking or wet - (4) Pumped recently - (5)
Air or pressure gage measurement - (6) Other - (7) Recharge operation at or near well - (8) Oil in casing - (9) Caved or deepened When a measurement was attempted, but could not be obtained, then only a number in parentheses is shown in the column. The code applicable to these "no measurements" is as follows: - (1) Pumping - (2) Pump house locked - (3) Tape hung up - (4) Cannot get tape in casing - (5) Unable to locate well - (6) Well has been destroyed - (7) Special - (8) Casing leaking or wet - (9) Temporarily inaccessible - (0) Measurement discontinued The words FLOW and DRY are shown in this column to indicate a flowing or dry well, respectively. A minus preceding the number in this column indicates that the static water level in the well is this distance in feet above the ground surface. <u>Water Surface Elevation</u> - This is the elevation in feet above mean sea level (USGS Datum) of the water surface in the well. It was derived by subtraction of the depth measurement from the ground surface elevation. Agency Supplying Data - Each number in this column is the code number for the agency supplying data for that measurement. The agencies supplying data for this report and the code numbers assigned to them are as follows: | Code | Agency | |------|---| | 2100 | Monterey County Flood Control and Water
Conservation District | | 2400 | Santa Clara Valley Water Conservation District | | 5000 | U. S. Geological Survey | | 5005 | Post Engineer, Fort Ord | | 5050 | Department of Water Resources | | 5100 | Alameda County Flood Control and Water Conservation District | | 5101 | Napa County | | 5102 | Santa Cruz County | | 5109 | Solano County | | 5117 | San Luis Obispo County Flood Control and
Water Conservation District | | 5151 | San Benito County | | 5200 | City of Gilroy | | 5401 | Alameda County Water District | | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYIN
DATA | |----------------------|---|----------------------|---|--|-----------------------------|----------------------|---|--|---|--|------------------------------| | | NORTH CO. | ASTAL REGION | 1-00.00 | | | | | | | | | | POTTER VALLEY 1-14.0 | 00 | | | | - | HEALDSBURG AREA 1-18 | 1.02 | | | | | | 17N/11W-18J01M | 955.0 | 4-11-68 | -0.5 | 955.5 | 5050 | 9N/09W-20K04M | 97.0 | 10-18-67 | 5.7 | 91.3 | 5000 | | 17N/11W-32J01M | 905.0 | 4-11-68 | 1.8 | 903.2 | 5050 | | | 11-17-67
12-13-67
1-16-68
2-15-68 | 5.6
5.0
2.2
2.3 | 91.4
92.0
94.8
94.7 | 5000
5000
5000
5000 | | UKIAH VALLEY 1-15.00 | | | | | | | | 3-15-68
4-15-68 | 0.2 | 96.8
93.1 | 5000
5000 | | 15N/12W-08L01M | 640.0 | 4-10-68 | 18.0 | 622.0 | 5050 | | | 5-17-68
6-14-68 | 4.1 | 92.9 | 5000
5000 | | 15N/12W-35M01M | 600.0 | 4-10-68 | (1) 4.4 | 595.6 | 5050 | | | 7-15-68
8-15-68
9-17-68 | 6.1
6.3
6.9 | 90.9
90.7
90.1 | 5000
5000
5000 | | SANEL VALLEY 1-16.00 | | | | | - | 9N/09W-28N01M | 90.0 | 10-18-67 | 22.1 | 67.9 | 5000 | | 13N/11W-18E01M | 490.0 | 4-10-68 | (1) 11.3 | 478.7 | 5050 | | | 11-17-67
12-13-67 | 18.3
17.2 | 71.7
72.8 | 5000
5000 | | 13N/11W-19P01M | 488.0 | 4-10-68 | 10.2 | 477.8 | 5050 | | | 1-16-68
2-15-68 | 14.3
16.5 | 75.7
73.5 | 5000
5000 | | 13N/11W-20G01M | 515.0 | 4-10-68 | 4.8 | 510.2 | 5050 | | | 3-15-68
4-15-68 | 15.3
17.3 | 74.7
72.7 | 5000
5000 | | LEXANDER VALLEY 1-1 | 7.00 | | | | | | | 5-17-68
6-14-68 | 18.9
18.4 | 71.1
71.6 | 5000
5000 | | 10N/09W-18B01M | 230.0 | 4-10-68 | 15.4 | 214.6 | 5050 | | | 7-15-68
8-15-68 | 21.8
23.7 | 68.2 | 5000
5000 | | 10N/09W-26L02M | 205.0 | 4-10-68 | 1.2 | 203.8 | 5050 | | | 9-17-68 | 24.7 | 65.3 | 5000 | | 10N/09W-33C01M | 180.0 | 4-10-68 | 5.6 | 174.4 | 5050 | 9N/10W-12C01M | 120.0 | 10-18-67
11-17-67 | 13.9
14.4 | 106.1 | 5000
5000 | | 11N/10W-08P01M | 305.0 | 4-10-68 | 9.6 | 295.4 | 5050 | | | 12-13-67
1-16-68 | 13.6
14.2 | 106.4 | 5000
5000 | | 11N/10W-17P02M | 292.0 | 4-10-68 | 8.2 | 283.8 | 5050 | | | 2-15-68
3-15-68 | 12.8
11.6 | 107.2 | 5000
5000 | | 11N/10W-19F02M | 346.0 | 4-10-68 | 5.6 | 340.4 | 5050 | | | 4-15-68
5-17-68 | 20.7 | 99.3
105.6 | 5000
5000 | | 221, 2011 252 2011 | | | | | - | | | 6-14-68
7-15-68 | 14.7 | 105.3 | 5000
5000 | | ANTA ROSA VALLEY 1- | 18.00 | | | | | | | 8-15-68
9-17-68 | 15.2
15.1 | 104.8 | 5000
5000 | | ANTA ROSA AREA 1-18 | .01 | | | | | 10N/10W-22001M | 180.0 | 10-18-67 | 10.5 | 169.5 | 5000 | | 6N/08W-07P02M | 95.0 | 4-09-68 | (8) 15.0 | 80.0 | 5050 | | | 11-17-67
12-13-67 | 10.5 | 169.5
170.0 | 5000
5000 | | 6N/08W-13R01M | 115.0 | 4-09-68 | 14.8 | 100.2 | 5050 | | | 1-16-68
2-15-68 | 7.0
8.8 | 173.0
171.2 | 5000 | | 6N/08W-15J03M | 95.0 | 4-09-68 | 12.6 | 82.4 | 5050 | | | 3-15-68
4-15-68 | 7.6
9.5 | 172.4 | 500 | | 6N/08W-15R01M | 95.0 | 4-09-68 | 17.7 | 77.3 | 5050 | | | 5-17-68
6-14-68 | 13.4 | 166.6
169.4 | 5000 | | 7N/06W-19N01M | 465.0 | 4-09-68 | 4.5 | 460.5 | 5050 | | | 7-15-68
8-15-68 | (1) 11.0 | 169.0
168.8 | 5000 | | 7N/07W-06R01M | 275.0 | 4-09-68 | (3) 6.5 | 268.5 | 5050 | | | 9-17-68 | 11.2 | 168.8 | 5000 | | 7N/08W-11M01M | 160.0 | 4-09-68 | 7.0 | 153.0 | 5050 | 10N/10W-26M01M | 161.0 | 10-18-67
11-17-67 | 11.6 | 149.4
150.1 | 5000
5000 | | 7N/08W-24H02M | 190.0 | 4-09-68 | (3) 12.1 | 177.9 | 5050 | | | 12-13-67
1-16-68 | 10.6 | 150.4
153.5 | 5000
5000 | | 7N/09W-01C01M | 90.0 | 4-09-68 | 21.1 | 68.9 | 5050 | | | 2-15-68
3-15-68 | 9.8 | 151.2
152.4 | 5000 | | 7N/09W-35DO2M | 135.0 | 4-09-68 | 29.3 | 105.7 | 5050 | | | 4-15-68
5-17-68 | 10.4 | 150.6
145.8 | 5000 | | 8N/09W-36N01M | 90.0 | 4-09-68 | 5.4 | 84.6 | 5050 | | | 6-14-68
7-15-68 | 11.3 | 149.7 | 5000 | | 8N/09W-36P01M | 90.0 | 4-09-68 | 52.9 | 37.1 | 5050 | | | 8-15-68
9-17-68 | 12.9 | 148.1 | 5000 | | HEALDSBURG AREA 1-1 | 18.02 | | | | | 10N/10W-35Q01M | 142.0 | 10-18-67
11-17-67 | 5.4
5.6 | 136.6
136.4 | 5000
5000 | | 8N/09W-03P01M | 77.0 | 10-18-67
11-17-67 | (1) 0.3
7.9 | 76.7
69.1 | 5000
5000 | | | 12-13-67 | 5.8 | 136.2 | 5000 | | | | 12-13-67 | 6.8 | 70.2 | 5000
5000 | | | 2-15-68
3-15-68 | 1.0 | 141.0 | 5000 | | | | 2-15-68
3-15-68 | 14.5
17.1 | 62.5
59.9 | 5000
5000 | | | 4-15-68
5-17-68 | 1.8 | 140.2 | 5000 | | | | 4-15-68
5-17-68 | 20.0 | 57.0
72.0 | 5000
5000 | | | 6-14-68
7-15-68 | 3.0 | 139.0 | 5000 | | | | 6-14-68
7-15-68 | 7.2
7.8 | 69.8
69.2 | 5000
5000 | | | 8-15-68
9-17-68 | 5.2 | 136.8 | 5000 | | | | 8-15-68
9-17-68 | 8.4
8.3 | 68.6
68.7 | 5000
5000 | | | 3-17-00 | 3.7 | 130.3 | 3000 | | 8N/09W-22L01M | 67.0 | 10-18-67 | 37.3 | 29.7 | 5000 | LOWER RUSSIAN RIVER | VALLEY 1-98.00 | | | | | | 0M/09M-22D01M | 07.0 | 11-17-67
12-13-67 | 29.8
28.7 | 37.2
38.3 | 5000 | 7N/10W-06N01M | 25.0 | 4-10-68 | 19.4 | 5.6 | 5050 | | | | 1-16-68 | 27.8 | 39.2 | 5000 | 7N/11W-14E01M | 25.0 | 4-10-68 | 18.4 | 6.6 | 5050 | | | | 2-15-68
3-15-68 | 31.8 | 35.2
41.0 | 5000
5000 | 8N/10W-29D02M | 50.0 | 4-10-68 | 3.0 | 47.0 | 5050 | | | | 4-15-68
5-17-68 | 27.0
28.7 | 40.0
38.3 | 5000
5000 | | | | | | | | | | 6-14-68
7-15-68 | 37.1
31.5 | 29.9
35.5 | 5000
5000 | | SAN FRANC | SCO BAY REGI | ON 2-00.00 | | | | | | 8-15-68
9-17-68 | 32.9
31.8 | 34.1
35.2 | 5000
5000 | PETALUMA VALLEY 2-0 | 1.00 | | | | | | 9N/09W-20E02M | 100.0 | 10-18-67 | 16.4 | 83.6 | 5000 | 3N/06W-01Q01M | 2.0 | 4-08-68 | FLOW | | 5050 | | | | 11-17-67 | 11.0 | 89.0
84.4 | 5000
5000 | | | 5-13-68
9-19-68 | FLOW
3.6 | -1.6 | 505 | | | | 1-16-68
2-15-68 | 12.4 | 87.6
84.8 | 5000
5000 | 5N/07W-19N01M | 45.0 | 4-08-68 | 3.1 | 41.9 | 505 | | | | 3-15-68
4-15-68 | 14.0
15.4 | 86.0
84.6 | 5000
5000 | | | 5-13-68
9-19-68 | 7.5
11.4 | 37.5
33.6 | 5050 | | | | 5-17-68
6-14-68 | 16.5
17.6 | 83.5
82.4 | 5000
5000 | 5N/07W-20B02M | 41.0 | 10-23-67 | 65.0 | -24.0 | 5050 | | | | 7-15-68
8-15-68 | 17.0
20.8 | 83.0
79.2 | 5000
5000 | | | 11-16-67
3-19-68 | 61.7
47.8 | -20.7
-6.8 | 5050
5050 | | | | 9-17-68 | 18.3 | 81.7 | 5000 | | | 4-08-68
5-13-68 | 44.7
61.3 | -6.7
-20.3 | 5050
5050 | | | | | | | | | | 9-19-68 | 68.8 | -27.8 | 5050 | | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | |----------------------|---|----------------------|---|--|-----------------------------|----------------------|---|----------------------|---|--|-----------------------------| | PETALUMA VALLEY 2-0 | 1.00 | | | | | NAPA VALLEY 2-02.01 | | | | | | | 5N/07W-21H01M | 65.0 | 10-23-67 |
38.7 | 26.3 | 5050 | 6N/04W-16P01M | 62.0 | 3-20-68 | 9.1 | 52.9 | 5101 | | | | 11-16-67
3-19-68 | 41.1 28.2 | 23.9
36.8 | 5050
5050 | 6N/04W-17A01M | 67.0 | 10-18-67 | (8) 11.0 | 56.0 | 5050 | | | | 4-08-68
5-13-68 | 27.3
28.2 | 37.7
36.8 | 5050
5050 | | | 11-15-67
3-19-68 | (8) 10.5
4.8 | 56.5
62.2 | 5050
5050 | | | | 9-19-68 | 40.2 | 24.8 | 5050 | | | 4-15-68
5-14-68 | 5.2
7.9 | 61.8
59.1 | 5050
5050 | | 5N/07W-26R01M | 53.6 | 10-23-67
11-16-67 | 23.9
24.1 | 29.7
29.5 | 5050
5050 | | | 9-19-68 | 15.5 | 51.5 | 5050 | | | | 3-19-68
4-08-68 | 18.4
17.5 | 35.2
36.1 | 5050
5050 | 6N/04W-18A02M | 85.0 | 3-20-68 | 18.8 | 66.2 | 5101 | | | | 5-13-68
9-19-68 | 17.9
25.5 | 35.7
28.1 | 5050
5050 | 6N/04W-19B01M | 125.0 | 3-20-68 | 16.6 | 108.4 | 5101 | | 5N/07W-35K01M | 18.8 | 4-08-68 | 7.8 | 11.0 | 5050 | 6N/04W-21G01M | 61.0 | 3-18-68 | 0.7 | 60.3 | 5101 | | 307,0711 2011 | | 5-13-68
9-19-68 | 11.7 | 7.0 | 5050
5050 | 6N/04W-22P01M | 53.0 | 3-18-68 | 1.9 | 51.1 | 5101 | | | | | | | | 6N/04W-23J01M | 87.0 | 3-18-68 | (8) | | 5101 | | NAPA-SONOMA VALLEY | 2-02.00 | | | | | 6N/04W-26N01M | 32.0 | 3-20-68 | 16.4 | 15.6 | 5101 | | NAPA VALLEY 2-02.01 | | | | | | 6N/04W-27L02M | 50.0 | 10-18-67
11-15-67 | 44.6
44.0 | 5.4
6.0 | 5050
5050 | | 4N/04W-02L01M | 25.0 | 3-18-68 | 7.6 | 17.4 | 5101 | | | 3-19-68
4-14-68 | 27.6
25.4 | 22.4 | 5050
5050 | | 4N/04W-04C01M | 12.0 | 3-18-68 | 8.2 | 3.8 | 5101 | | | 5-14-68
9-19-68 | 32.7
47.6 | 17.3 | 5050
5050 | | 4N/04W-05B01M | 31.0 | 3-18-68 | 11.3 | 19.7 | 5101 | 63/0/11 2230334 | EO. O | | | | | | 4N/04W-05D02M | 22.0 | 3-18-68 | 4.7 | 17.3 | 5101 | 6N/04W-27N01M | 50.0 | 3-18-68 | 21.9 | 28.1 | 5101 | | 4N/04W-12M01M | 48.0 | 3-18-68 | 16.6 | 31.4 | 5101 | 6N/04W-28K01M | 62.0 | 3-18-68 | 5.7 | 56.3 | 5101 | | 4N/04W-14C02M | 34.0 | 3-18-68 | 37.9 | -3.9 | 5101 | 6N/04W-29B01M | 92.0 | 3-20-68 | 4.4 | 87.6 | 5101 | | 4N/04W-25K01M | 37.0 | 3-18-68 | 0.2 | 36.8 | 5101 | 6N/04W-30C01M | 149.0 | 3-20-68 | 6.4 | 142.6 | 5101 | | 5N/03W-05M01M | 255.0 | 3-18-68 | 77.3 | 177.7 | 5101 | 6N/04W-32J06M | 94.0 | 3-20-68 | 14.4 | 79.6 | 5101 | | 5N/04W-03G01M | 18.0 | 3-19-68 | 9.4 | 8.6 | 5101 | 6N/04W-32L02M | 107.0 | 3-20-68 | (8) | | 5101 | | 5N/04W-04G01M | 63.5 | 3-19-68 | 5.1 | 58.4 | 5101 | 6N/04W-35G03M | 38.0 | 3-18-68 | 10.5 | 27.5 | 5101 | | 5N/04W-04Q01M | 58.0 | 3-19-68 | 11.3 | 46.7 | 5101 | 6N/04W-35L03M | 23.0 | 3-18-68 | (0) | | 5101 | | 5N/04W-05P01M | 121.0 | 3-19-68 | 2.0 | 119.0 | 5101 | 6N/04W-36H01M | 105.0 | 3-26-68 | 22.0 | 83.0 | 5101 | | 5N/04W-05P02M | 122.0 | 3-19-68 | 16.1 | 105.9 | 5101 | 6N/05W-12R01M | 180.0 | 3-20-68 | 21.1 | 158.9 | 5101 | | 5N/04W-10F01M | 30.0 | 3-19-68 | 1.7 | 28.3 | 5101 | 7N/04W-30L01M | 112.0 | 3-20-68 | 3.2 | 108.8 | 5101 | | | | | | | | 7N/04W-30M01M | 114.0 | 3-26-68 | 1.1 | 112.9 | 5101 | | 5N/04W-11F03M | 16.0 | 3-19-68 | 12.7 | 3.3 | 5101 | 7N/04W-31E01H | 90.0 | 3-26-68 | (4) | | 5101 | | 5N/04W-11M01M | 13.0 | 10-18-67 | 8.3
8.0 | 4.7
5.0 | 5050
5050 | 7N/04W-32B02M | 180.0 | 3-26-68 | 1.9 | 178.1 | 5101 | | | | 3-19-68
4-15-68 | 5.0
7.2 | 8.0
5.8 | 5050
5050 | 7N/05W-03G01M | 188.0 | 3-26-68 | 29.0 | 159.0 | 5101 | | | | 5-14-68
9-19-68 | 7.9
8.9 | 5.1
4.1 | 5050
5050 | 7N/05W-03G02M | 188.0 | 3-26-68 | 10.9 | 177.1 | 5101 | | 5N/04W-12F01M | 130.0 | 3-19-68 | (7) | | 5101 | 7N/05W-04R02M | 172.0 | 3-26-68 | 3.7 | 168.3 | 5101 | | 5N/04W-12H01M | 121.0 | 3-19-68 | 41.0 | 80.0 | 5101 | 7N/05W-05A01M | 182.0 | 3-25-68 | 0.7 | 181.3 | 5101 | | 5N/04W-13H01M | 132.0 | 3-22-68 | 5.5 | 126.5 | 5101 | 7N/05W-06F01M | 245.0 | 3-26-68 | 16.3 | 228.7 | 5101 | | 5N/04W-13H02M | 120.0 | 3-19-68 | 11.8 | 108.2 | 5101 | 7N/05W-06J01M | 215.0 | 3-26-68 | 11.4 | 203.6 | 5101 | | 5N/04W-14C01M | 17.0 | 3-22-68 | 10.5 | 6.5 | 5101 | 7N/05W-08A01M | 175.0 | 3-25-68 | 10.9 | 164.1 | 5101 | | 5N/04W-15C02M | 22.0 | 3-19-68 | 15.1 | 6.9 | 5101 | 7N/05W-08M01M | 190.0 | 3-25-68 | 16.6 | 173.4 | 5101 | | 5N/04W-15E01M | 22.0 | 3-19-68 | 15.2 | 6.8 | 5101 | 7N/05W-09Q01M | 155.0 | 3-25-68 | 7.2 | 147.8 | 5101 | | 5N/04W-19R02M | 110.0 | 3-19-68 | 10.6 | 99.4 | 5101 | 7N/05W-09Q02M | 155.0 | 10-18-67 | 14.7 | 140.3 | 5050 | | 5N/04W-20R02M | 50.0 | 3-19-68 | 0.9 | 49.1 | 5101 | | | 11-15-67
3-19-68 | 15.1
7.2 | 139.9
147.8 | 5050
5050 | | 5N/04W-21B01M | 75.0 | 3-19-68 | 15.5 | 59.5 | 5101 | | | 4-15-68
5-14-68 | 8.2
9.9 | 146.8
145.1 | 5050
5050 | | 5N/04W-22M01M | 12.0 | 3-19-68 | -1.0 | 13.0 | 5101 | | | 9-19-68 | 16.5 | 138.5 | 5050 | | 5N/04W-28R01M | 37.0 | 3-19-68 | 47.4 | -10.4 | 5101 | 7N/05W-09Q03M | 155.0 | 3-25-68 | 3.1 | 151.9 | 5101 | | | | 3-20-68 | 23.9 | | 5101 | 7N/05W-10C01M | 162.2 | 3-26-68 | 11.1 | 151.1 | 5101 | | 5N/04W-29H01M | 77.0 | 3-20-68 | 111.7 | 53.1
128.3 | 5101 | 7N/05W-14B02M | 139.0 | 3-26-68 | 4.1 | 134.9 | 5101 | | 6N/03W-31E01M | | | | 120.3 | | 7N/05W-14J01M | 140.0 | 3-26-68 | 4.2 | 135.8 | 5101 | | 6N/03W-31F01M | 145.0 | 3-22-68 | (4) | 110 | 5101 | 7N/05W-15A01M | 143.0 | 3-26-68 | 9.1 | 133.9 | 5101 | | 6N/03W-31H01M | 180.0 | 3-20-68 | 67.5 | 112.5 | 5101 | 7N/05W-15F01M | 141.0 | 3-26-68 | 8.9 | 132.1 | 5101 | | 6N/03W-31N01M | 170.0 | 3-22-68 | 46.7 | 123.3 | 5101 | 7N/05W-16L01M | 171.0 | 3-25-68 | -0.5 | 171.5 | 5101 | | 6N/03W-31N02M | 167.0 | 3-22-68 | 45.8 | 121.2 | 5101 | 7N/05W-16N02M | 193.0 | 3-26-68 | 12.9 | 180.1 | 5101 | | 6N/04W-05R01M | 67.0 | 3-18-68 | 0.8 | 66.2 | 5101 | 7N/05W-17B01M | 166.C | 3-26-68 | (4) | | 5101 | | 6N/04W-06L02M | 80.0 | 3-20-68 | 6.4 | 73.6 | 5101 | 7N/05W-17B02M | 161.0 | 3-26-68 | -0.2 | 161.2 | 5101 | | 6N/04W-06N01M | 75.0 | 3-20-68 | 3.2 | 71.8 | 5101 | 7N/05W-21C01M | 152.0 | 3-26-68 | -1.6 | 153.6 | 5101 | | 6N/04W-06P01M | 75.0 | 3-20-68 | 6.4 | 68.6 | 5101 | 7N/05W-22E03N | 140.0 | 3-25-68 | -0.2 | 140.2 | 5101 | | 6N/04W-07N01M | 135.0 | 3-20-68 | 18.5 | 116.5 | 5101 | 7N/05W-22H01M | 133.0 | 3-25-68 | 5.1 | 127.9 | 5101 | | 6N/04W-08Z01M | 70.0 | 3-20-68 | 6.9 | 63.1 | 5101 | 7N/05W-23D02M | 127.0 | 3-25-68 | 0.4 | 126.6 | 5101 | | 6N/04W-15Q01M | 67.0 | 3-18-68 | 35.7 | 31.3 | 5101 | | | | | | | | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | FA W | ND SUR-
CE TO
ATER
RFACE
FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | |----------------------|---|---------------------|---|--|-----------------------------|------------------------|---|-----------------------------|------------|---|--|-----------------------------| | NAPA VALLEY 2-02.01 | | | | | | SUISUN-PAIRFIELD VALLE | Y 2-03.00 | | | | | | | 7N/05W-23Q01H | 115.0 | 3-25-68 | 4.7 | 110.3 | 5101 | 4N/02W-04D02M | 26.0 | 10-10-67 | | 11.5 | 14.5 | 5109 | | 7N/05W-24P01M | 127.0 | 3-22-68 | 1.2 | 125.8 | 5101 | /w/2000 a/ 1000 | 25.0 | 3-08-68 | | 10.1 | 15.9 | 5109 | | 7N/05W-25A01M | 163.0 | 3-22-68 | 9.0 | 154.0 | 5101 | 4N/02W-06A01M | 35.0 | 11-22-66 | | 16.2 | 18.8 | 5050
5050 | | 7N/05W-26D02M | 127.0 | 3-25-68 | 0.7 | 126.3 | 5101 | | | 1-19-67 | | 16.2 | 18.8 | 5050
5050 | | 7N/05W-34C02M | 190.0 | 3-26-68 | 5.7 | 184.3 | 5101 | | | 3-15-67 | | 13.3 | 21.7 | 5050
5050 | | 7N/05W-35F02M | 175.0 | 3-25-68 | 3.1 | 171.9 | 5101 | | | 5-17-67 | | 13.5 | 21.5 | 5050
5050 | | 7N/05W-36N01M | 141.0 | 3-25-68 | 3.6 | 137.4 | 5101 | | | 9-12-67 | | 15.6 | 19.4 | 5050
5109 | | 7N/06W-01A01M | 264.0 | 3-25-68 | 10.8 | 253.2 | 5101 | | | 10-20-67 | | 15.7 | 19.3 | 5050
5050 | | 8N/05W-30P01M | 220.0 | 3-25-68 | 1.0 | 219.0 | 5101 | | | 3-08-68 | | 14.3 | 20.7 | 5109
5050 | | 8N/05W-3 1H01M | 212.0 | 3-25-68 | 10.7 | 201.3 | 5101 | | | 4-16-68
5-13-68 | | 14.4 | 20.6 | 5050
5050 | | 8N/05W-31P02M | 237.0 | 3-25-68 | 12.1 | 224.9 | \$101 | | | 9-17-68 | | 15.5 | 19.5 | 5050 | | 8N/05W-31R01M | 210.0 | 3-21-68 | 7.9 | 202.1 | 5101 | 4N/02W-09A01M | 7.0 | 10-10-67 | | -0.3 | 7.3
5.9 | 5109
5050 | | 8N/05W-32K04M | 192.0 | 3-25-68 | (7) | | 5101 | | | 3-01-68 | | 1.3 | 5.7
7.5 | 5050
5109 | | 8N/06W-03M01M | 330.0 | 3-21-68 | 40.9 | 289.1 | 5101 | | | 3-18-68
4-16-68 | | FLOW
-0.3 | 7.3 | 5050
5050 | | 8N/06W-04F01M | 330.0 | 3-21-68 | (6) 11.7 | 318.3 | 5101 | | | 5-13-68
9-17-68 | | 0.0 | 7.0
6.0 | 5050
5050 | | 8N/06W-06L04M | 335.0 | 3-21-68 | 3.2 | 331.8 | \$101 | 4N/02W-09H01M | 4.0 | 10-20-67 | | -0.4 | 4.4 | 5050 | | 8N/06W-09D02M | 290.0 | 3-21-68 | 10.4 | 279.6 | 5101 | | | 11-16-67
3-18-68 | | (1)
FLOW | | 5050
5050 | | 8N/06W-09H01M | 290.0 | 3-21-68 | 3.0 | 287.0 | 5101 | | | 4-16-68
5-13-68 | (3)
(1) | 0.6 | 2.8 | \$050
\$050 | | 8N/06W-09N02M | 291.5 | 3-21-68 | 1.0 | 290.5 | 5101 | | | 9-17-68 | (1) | 0.3 | 3.7 | 5050 | | 8N/06W-10Q01M | 290.0 | . 10-18-67 | 5.2 | 284.8 | 5050 | 4N/03W-01D01M | 37.0 | 10-10-67 | | 7.3 | 29.7
33.4 | 5109
5109 | | 3.17.03.11.00 | | 11-15-67
3-19-68 | 4.9 | 285.1
288.9 | 5050
5050 | 4N/03W-13G01M | 47.0 | 10-10-67 | | 17.8 | 29.2 | 5109 | | | | 4-15-68
5-14-68 | 1.7 | 288.3
287.5 | 5050
5050 | 4117 03 W - 23 00 211 | 47.0 | 3-08-68 | | 18.3 | 28.7 | 5109 | | | | 9-19-68 | 16.5 | 273.5 | 5050 | 5N/01W-02N01M | 88.5 | 10-09-67
3-07-68 | | 10.0 | 78.5
80.1 | 5109
5109 | | 8N/06W-14N01M | 285.0 | 3-21-68 | 10.2 | 274.8 | 5101 | EN/OLU OZPOLA | 115.0 | | | | | | | 8N/06W-14Q01M | 250.0 | 3-21-68 | 3.6 | 246.4 | 5101 | 5N/01W-07E01M | 115.0 |
10-09-67
3-07-68 | | 14.0 | 101.0 | 5109
5109 | | 8N/06W-23M01M | 285.0 | 3-21-68 | 4.1 | 280.9 | 5101 | 5N/01W-25R01M | 25.0 | 10-09-67 | | 10.2 | 14.8 | \$109 | | 8N/06W-24B01M | 300.0 | 3-21-68 | 7.1 | 292.9 | 5101 | FW/03W 00003W | 1/2 0 | 3-07-68 | | 8.8 | 16.2 | 5109 | | 8N/06W-25G02M | 230.0 | 3-21-68 | (8) | | 5101 | 5N/02W-08G03M | 143.0 | 10-10-67
3-07- 68 | | 12.1 | 130.9
132.3 | 5109
5109 | | 9N/06W-31Q01M | 340.0 | 3-21-68 | -0.1 | 340.1 | 5101 | 5N/02W-14N03M | 100.0 | 10-10-67 | | 10.8 | 89.2 | 5109 | | 9N/06W-32M01M | 360.0 | 3-21-68 | 5.4 | 354.6 | 5101 | | | 5-15-68 | | 8.7 | 91.3 | 5109 | | 9N/07W-24L01M | 460.0 | 3-21-68 | 5.2 | 454.8 | 5101 | 5N/02W-21P08M | 60.0 | 10-10-67
10-20-67 | | 21.6 | 38.4
48.8 | 5109
5050 | | 9N/07W-25N01M | 380.0 | 3-21-68 | 1.5 | 378.5 | 5101 | | | 11-16-67
3-07-68 | | 11.8 | 48.2
48.3 | 5050
5109 | | 9N/07W-25N02M | 380.0 | 3-21-68 | 3.2 | 376.8 | 5101 | | | 3-18-68
4-16-68 | | 11.3 | 48.7 | 5050
5050 | | 9N/07W-26P01M | 400.0 | 3-21-68 | 1.0 | 399.0 | 5101 | | | 5-13-68
9-17-68 | | 10.8 | 49.2
47.8 | \$050
5050 | | 9N/07W-35K01M | 399.0 | 3-21-68 | 0.6 | 398.4 | 5101 | 5N/02W-24B04M | 58.0 | 10-10-67 | | 6.1 | 51.9 | 5109 | | SONOMA VALLEY 2-02.0 | 2 | | | | | 5N/02W-25R01M | 7.0 | 3-07-68 | | 5.6 | 53.3 | 5109 | | 5N/05W-17C01M | 85.0 | 10-23-67 | 28.4 | 56.6 | 5050 | | | 10-19-67 | | 5.9 | 1.1 | 5050
5050 | | 347034-1700111 | 05.0 | 11-16-67
3-19-68 | 25.9 | 59.1
66.0 | 5050
5050 | | | 3-07-68 | | 2.1 | 4.9 | 5109
5050 | | | | 4-15-68 | 19.7 | 65.3 | 5050 | | | 4-16-68 | | 3.3 | 3.7 | 5050 | | | | 5-14-68
9-19-68 | 18.9
26.1 | 66.1
58.9 | 5050
5050 | | | 5-13-68
9-17-68 | | 4.3
5.7 | 2.7
1.3 | 5050
5050 | | 5N/05W-18R01M | 43.0 | 10-23-67 | 13.1 | 29.9 | 5050 | 5N/02W-27J02M | 24.0 | 10-09-67 | (2) | 6.5 | 17.5
12.8 | 5109 | | | | 11-16-67
3-19-68 | 13.3 | 29.7
40.9 | 5050
5050 | | | 11-16-67 | (2) | 6.3 | 17.7 | 5050
5050 | | | | 4-15-68
5-14-68 | 3.2
5.0 | 39.8
38.0 | 5050
5050 | | | 3-08-68 | (2)
(2) | 28.7 | -1.3
-4.7 | 5109
5050 | | | | 9-19-68 | 14.6 | 28.4 | 5050 | | | 4-16-68
5-13-68 | | 5.8 | 18.2
18.3 | 5050
5050 | | 5N/05W-28N01M | 11.0 | 3-19-68
4-15-68 | 6.6 | 4.4 | 5050
5050 | | | 9-17-68 | | 8.0 | 16.0 | 5050 | | | | 5-14-68
9-19-68 | (1) 8.6
(1) 11.3 | 2.4
-0.3 | 5050
5050 | 5N/02W-29R01M | 46.0 | 10-10-67
3-08-68 | | 10.9 | 35.1
35.6 | 5109
5109 | | 5N/05W-29N01M | 16.0 | 10-23-67 | 12.1 | 3.9 | 5050 | 5N/02W-30J01M | 65.0 | 10-20-67 | (8) | | 44.0 | 50.50 | | | | 11-16-67
3-19-68 | 11.9
5.3 | 4.1 | 5050
5050 | | | 11-16-67
3-18-68 | (8) | 22.0
21.9 | 43.0 | 5050
5050 | | | | 4-15-68
5-14-68 | 7.9
8.5 | 8.1
7.5 | 5050
5050 | | | 4-16-68
5-13-68 | (8) | 22.1
18.8 | 42.9 | 5050
5050 | | | | 9-19-68 | 12.4 | 3.6 | 5050 | | | 9-17-68 | | 19.6 | 45.4 | \$050 | | \$N/05W-30J03M | 16.0 | 10-23-67 | 12.5
12.0 | 3.5
4.0 | 5050
5050 | YGNACIO VALLEY 2-06.00 | | | | | | | | | | 3-19-68
4-15-68 | 5.6 | 10.4 | 50 50
50 50 | 1N/01W-07K01M | 83.0 | 10-23-67 | | 13.2 | 69.8 | 5050 | | | | 5-14-68
9-19-68 | | -1.5
1.5 | 5050
5050 | | | 11-16-67 3-18-68 | | 13.1 | 69.9
71.8 | 5050
5050 | | | | ., | | | | | | 4-18-68
5-16-68 | | 12.0 | 71.0 | 5050
5050 | | | | | | | | | | 9-18-68 | | 13.7 | 69.3 | 5050 | | | | | | | | | | | | | | | | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | |--------------------------------|---|--|---|---|--|--------------------------------|---|---|---|--|--| | YGNACIO VALLEY 2-06 | .00 | | | | | EAST BAY AREA LOWER | AQUIFER 2-09.01 | ı | | | | | 1N/02W-11N01M | 63.0 | 10-23-67
11-16-67
3-18-68
4-18-68
5-16-68
9-19-68 | 12.8
12.7
11.2
12.2
(1) 15.5
15.0 | 50.2
50.3
51.8
50.8
47.5
48.0 | 5050
5050
5050
5050
5050
5050 | 3S/03W-24J01M | 11.0 | 10-04-67
11-01-67
12-06-67
1-04-68
2-07-68
3-06-68
4-03-68 | 65.2
64.0
56.8
66.6
61.7
59.0
58.4 | -54.2
-53.0
-45.8
-55.6
-50.7
-48.0 | 5100
5100
5100
5100
5100
5100
5100 | | 1N/02W-13P01M | 100.0 | 3-18-68
4-18-68
5-16-68
9-18-68 | 8.5
(1) 10.2
9.2
10.5 | 91.5
89.8
90.8
89.5 | 5050
5050
5050
5050 | | | 5-01-68
6-05-68
7-03-68
7-31-68
9-05-68 | 61.0
64.2
67.2
68.0
68.7 | -50.0
-53.2
-56.2
-57.0
-57.7 | 5100
5100
5100
5100
5100 | | 2N/02W-27R01M | 15.0 | 10-23-67
11-16-67
3-18-68
4-18-68
5-16-68 | (7)
4.9
3.0
3.7
4.8 | 10.1
12.0
11.3
10.2 | 5050
5050
5050
5050
5050 | 3S/03W-36R03M
4S/02W-02Q01M | 5.0 | 11-02-67
4-00-68
4-03-68 | 84.2
72.8
59.0 | -79.2
-67.8 | 5100
5100
5401 | | 2N/02W-36E01M | 48.0 | 9-18-68
10-23-67
11-16-67
3-18-68
4-18-68
5-16-68
9-18-68 | 6.8
17.1
16.5
14.0
15.3
16.0
14.2 | 8.2
30.9
31.5
34.0
32.7
32.0
33.8 | 5050
5050
5050
5050
5050
5050
5050 | 45/02W-35R02M | 15.0 | 9-25-68
10-20-67
11-17-67
12-15-67
1-12-68
2-23-68
3-22-68 | 93.3
57.8
50.1
41.5
35.9
31.1
29.4 | -67.3
-42.8
-35.1
-26.5
-20.9
-16.1
-14.4 | 5401
5401
5401
5401
5401
5401 | | SANTA CLARA VALLEY | 2-09-00 | | | | | | | 4-19-68
5-17-68
6-14-68 | 32.0
40.3
45.8 | -17.0
-25.3
-30.8 | 5401
5401 | | EAST BAY AREA ABOVE | | -09.01 | | | | | | 7-26-68
8-23-68 | 49.7
45.3 | -34.7
-30.3 | 5401
5401 | | 4S/01W-35P03M | 115.3 | 10-20-67
11-17-67
12-15-67
1-12-68
2-23-68
3-15-68
4-26-68
5-24-68
6-07-68
7-19-68
8-16-68
9-13-68 | 120.8
112.1
107.4
103.0
97.4
94.2
98.5
108.1
113.1
122.6
123.3
118.2 | -5.5
3.2
7.9
12.3
17.9
21.1
16.8
7.2
2.2
2.7
-7.3
-8.0
-2.9 | 5401
5401
5401
5401
5401
5401
5401
5401 | 4\$/02W-36K01M | 24.0 | 9-06-68 10-28-66 11-11-66 12-23-66 1-20-67 2-17-67 3-17-67 4-21-67 5-05-67 6-23-67 7-21-67 8-18-67 9-01-67 | 45.1
83.3
76.7
65.1
60.4
55.0
51.5
45.7
46.2
58.1
67.9
71.1
69.5 | -30.1
-59.3
-52.7
-41.1
-36.4
-31.0
-27.5
-21.7
-22.2
-34.1
-43.9
-47.1
-45.5 | 5401
5401
5401
5401
5401
5401
5401
5401 | | EAST BAY AREA UPPER | ADULTER 2-09 01 | | | | | | | 10-20-67 | 69.9
62.2 | -45.9
-38.2 | 5401
5401 | | 3S/02W-08N02M | 48.0 | 10-04-67
11-01-67
12-06-67
1-04-68
2-07-68
3-06-68 | 18.4
18.2
17.4
(7)
(9)
(6) | 29.6
29.8
30.6 | 5100
5100
5100
5100
5100
5100 | | | 12-15-67
1-12-68
2-23-68
3-22-68
4-19-68
5-17-68
6-14-68 | 53.5
47.9
43.0
41.0
44.0
52.0
57.2 | -29.5
-23.9
-19.0
-17.0
-20.0
-28.0
-33.2 | 5401
5401
5401
5401
5401
5401 | | 3S/02W-08M03M | 48.0 | 4-00-68
6-05-68
7-03-68
7-31-68 | 18.0
18.0
18.4
18.7 | 30.0
30.0
29.6
29.3 | 5100
5100
5100
5100 | 5S/01W-09M01M | 15.0 | 7-26-68
8-23-68
9-06-68
4-08-68 | 61.5
57.3
57.3 | -37.5
-33.3
-33.3 | 5401
5401
5401 | | 3S/02W-08R05M | 64.0 | 9-05-68 | 18.2
34.0 | 29.8 | 5100
5100 | | | 9-23-68 | 59.9 | -44.9 | 5401 | | 33/02w-00k03h | o⊶.0 | 4-00-68 | 31.8 | 32.2 | 5100 | SOUTH BAY AREA 2-09 | 9.02 | | | | | | 3S/02W-19J01M | 30.0 | 10-04-67
11-01-67
12-06-67
1-04-68
2-07-68
3-06-68
4-03-68
5-01-68
6-05-68
7-03-68
7-31-68
9-05-68 | 10.8
10.4
9.8
11.8
11.5
10.4
9.7
9.8
10.0
10.3
10.2 | 19.2
19.6
20.2
18.2
18.5
19.6
20.3
20.2
20.0
19.7
19.8 | 5100
5100
5100
5100
5100
5100
5100
5100 | 6S/01E-07E01M | 15.8 | 10-00-67
11-28-67
12-01-68
2-01-68
3-26-68
4-25-68
5-22-68
6-26-68
7-01-68
9-01-68 | (6) 115.0
(6) 112.0
(6) 109.0
(6) 109.0
(6) 92.0
(6) 86.0
(6) 90.0
(6) 115.0
(6) 113.0
(6) 120.0
(6) 110.0 | -99.2
-96.2
-93.2
-84.2
-76.2
-70.2
-74.2
-94.2
-97.2
-104.2
-94.2 | 2400
2400
2400
2400
2400
2400
2400
2400 | | 3S/03W-24Q02M | 7.0 | 10-30-67
4-00-68 | (1)
(1) | | 5100
5100 | 6S/01E-21R01M | 138.0 | 10-20-67
11-27-67 | 199.3
193.3 | -61.3
-55.3 |
2400
2400 | | 4S/01W-18H03M | 47.0 | 10-27-67
11-24-67
12-22-67
1-19-68
2-16-68
3-15-68
4-26-68
5-24-68
6-07-68 | 70.7
70.5
65.0
60.9
57.4
54.6
55.0
53.9
54.2 | -23.7
-23.5
-18.0
-13.9
-10.4
-7.6
-8.0
-6.9
-7.2 | 5401
5401
5401
5401
5401
5401
5401
5401 | | | 12-07-67
1-15-68
2-26-68
3-25-68
4-24-68
5-21-68
6-24-68
7-24-68
8-27-68
9-23-68 | 184.8
180.2
168.9
161.4
169.0
175.5
188.6
194.8
187.4 | -46.8
-42.2
-30.9
-23.4
-31.0
-37.5
-50.6
-56.8
-49.4
-49.2 | 2400
2400
2400
2400
2400
2400
2400
2400 | | | | 7-19-68
8-16-68
9-13-68 | 57.4
55.4
55.0 | -10.4
-8.4
-8.0 | 5401
5401
5401 | 6S/01E-23P02M | 240.5 | 10-20-67
11-22-67 | 117.4
117.2 | 123.1
123.3 | 2400
2400 | | 4S/01W-22P05M | 80.0 | 11-02-67
4-00-68 | 47.9
42.7 | 32.1
37.3 | 5100
5100 | | | 12-07-67
1-12-68
2-23-68 | 11/.0
116.7
116.9 | 123.5
123.8
123.6 | 2400
2400
2400 | | 4S/02W-13C02M | 36.4 | 4-02-68
9-19-68 | 42.8
42.1 | -6.4
-5.7 | 5401
5401 | | | 4-23-68
5-16-68 | 115.7
117.5
118.2
116.4 | 124.8
123.0
122.3
124.1 | 2400
2400
2400
2400 | | 4S/02W-24Q02M | 33.4 | 11-02-67
4-00-68 | 62.9
51.8 | -29.5
-18.4 | 5100
5100 | | | 7-23-68
8-26-68
9-20-68 | 115.6
117.4
118.6 | 124.9
123.1
121.9 | 2400
2400
2400 | | 5S/01W-04F0IM | 40.9 | 10-20-67
11-17-67
12-15-67 | 59.0
59.3
(0) | -18.1
-18.4 | 5401
5401
5401 | 6S/01E-30M01M | 43.0 | 10-27-67
11-28-67
12-12-67
1-16-68 | 122.0
(6) 120.0
98.1
(8) 89.0 | -79.0
-77.0
-55.1
-46.0 | 2400
2400
2400
2400
2400 | | | | | 90.7 | -45.7 | 5100 | | | 3-18-68 | (8) 79.6 | -36.6 | 2400
2400
2400 | | 4S/02W-13C02M
4S/02W-24Q02M | 36.4
33.4
40.9 | 5-24-68
6-07-68
8-16-68
9-13-68
11-02-67
4-00-68
4-02-68
9-19-68
11-02-67
4-00-68
10-20-67
11-17-67
12-15-67 | 53.9
54.2
57.4
55.4
55.0
47.9
42.7
42.8
42.1
62.9
51.8
59.0
59.3 | -6.9
-7.2
-10.4
-8.4
-8.0
32.1
37.3
-6.4
-5.7
-29.5
-18.4 | 5401
5401
5401
5401
5401
5100
5100
5401
5100
5401
5401 | | | 8-27-68
9-23-68
10-20-67
11-22-67
12-07-67
1-12-68
2-23-68
3-23-68
4-23-68
5-16-68
6-24-68
9-20-68
10-27-67
11-28-67
12-12-67
1-16-68
2-20-68 | 187.4
187.2
117.4
117.2
11.0
116.7
116.9
115.7
117.5
118.2
116.4
115.6
117.4
118.6
122.0
(6) 120.0
98.1
(8) 89.0
(8) 84.2 | -49.4
-49.2
123.1
123.3
123.5
123.6
124.8
123.0
122.3
124.1
124.9
-79.0
-77.0
-55.1
-46.0
-41.2 | | | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TD
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | |---|---|---|--|--|--|----------------------|---|---|--|---|--| | SOUTH BAY AREA 2-09. | 02 | | | | | SOUTH BAY AREA 2-09 | 0.02 | | | | | | 6S/01E-30M01M
(Continued)
6S/01W-23E01M | 43.0 | 6-13-68
7-25-68
8-01-68
9-01-68 | (8) 120.6
(6) 126.0
(6) 126.0
(6) 124.0 | -77.6
-83.0
-83.0
-81.0 | 2400
2400
2400
2400
5000 | 7S/01E-31A02M | 151.6 | 10-19-67
11-25-67
12-04-67
1-03-68
2-09-68
3-05-68 | (1) 156.0
153.7
150.0
151.6
145.7
141.5 | -4.4
-2.1
1.6
0.0
5.9 | 2400
2400
2400
2400
2400
2400 | | 02/01M-73E0TU | 21.0 | 10-23-67
11-20-67
12-18-67
1-15-68
2-12-68
3-10-68
4-08-68
5-06-68 | 123.3
101.9
87.0
79.5
72.5
68.2
68.7
131.1 | -107.3
-80.9
-66.0
-58.5
-51.5
-47.2
-47.7 | 5000
5000
5000
5000
5000
5000
5000 | | | 4-03-68
5-07-68
6-11-68
7-19-68
8-13-68
9-18-68 | 136.7
141.4
145.7
152.6
157.6
(1) 165.0 | 14.9
10.2
5.9
-1.0
-6.0
-13.4 | 2400
2400
2400
2400
2400
2400 | | | | 6-03-68
7-29-68
8-26-68
9-26-68 | 100.7
136.1
119.5
133.1 | -79.7
-115.1
-98.5
-112.1 | 5000
5000
5000
5000 | 7S/02E-07P01M | 130.0 | 10-20-67
11-28-67
12-07-67
1-12-68
2-23-68 | 137.3
135.2
131.0
129.3
128.9 | -7.3
-5.2
-1.0
0.7
1.1 | 2400
2400
2400
2400
2400 | | 6S/02W-16R01M | 48.0 | 10-18-67
11-29-67
12-14-67
1-16-68
2-26-68
3-22-68
4-18-68
5-14-68 | 118.6
(7)
100.1
98.2
95.8
96.0
99.0 | -70.6
-52.1
-50.2
-47.8
-48.0
-51.0
-52.3 | 2400
2400
2400
2400
2400
2400
2400
2400 | | | 3-21-68
4-24-68
5-16-68
6-24-68
7-22-68
8-26-68
9-20-68 | 128.3
139.9
133.5
135.8
134.6
133.7
137.3 | 1.7
-9.9
-3.5
-5.8
-4.6
-3.7
-7.3 | 2400
2400
2400
2400
2400
2400
2400 | | | | 6-19-68
7-23-68
8-19-68
9-19-68 | 103.0
113.9
112.8
102.7 | -55.0
-65.9
-64.8
-54.7 | 2400
2400
2400
2400 | 7S/02E-17H01M | 349.0 | 10-11-67
11-21-67
12-12-67
1-11-68
2-21-68 | (8) 94.4
(8) 93.9
(8) 97.3
(8) 96.8
(8) 91.2 | 254.6
255.1
251.7
252.2
257.8 | 2400
2400
2400
2400
2400 | | 6s/02W-25CO1M | 73.0 | 11-01-67
11-28-67
12-12-67
1-17-68
2-21-68
3-21-68 | (8) 134.0
(8) 127.0
(8) 124.9
(8) 126.5
(8) 126.0
(8) 122.4
(8) 137.3 | -61.0
-54.0
-51.9
-53.5
-53.0
-49.4
-64.3 | 2400
2400
2400
2400
2400
2400
2400 | | | 3-21-68
4-18-68
5-15-68
6-21-68
7-17-68
8-29-68
9-17-68 | (8) 91.7
(8) 92.5
(8) 93.3
92.2
94.4
93.4
93.7 | 257.3
256.5
255.7
256.8
254.6
255.6
255.3 | 2400
2400
2400
2400
2400
2400
2400 | | 6s/02W-35C01M | 140.1 | 5-10-68
6-19-68
7-26-68
8-15-68
9-23-68 | (8) 121.0
(8) 123.0
(8) 131.6
(8) 124.0
(8) 119.9 | -48.0
-50.0
-58.6
-51.0
-46.9 | 2400
2400
2400
2400
2400
2400 | 7S/02E-33C01M | 462.0 | 10-11-67
11-21-67
12-12-67
1-11-68
2-21-68
3-20-68 | 21.4
20.7
20.0
20.3
19.6
20.5 | 440.6
441.3
442.0
441.7
442.4
441.5 | 2400
2400
2400
2400
2400
2400 | | | | 11-28-67
12-01-67
1-01-68
2-23-68
3-22-68
4-15-68
5-14-68 | (6) 254.0
(6) 254.0
(6) 250.0
(6) 254.0
(6) 252.0
225.0
243.4 | -113.9
-113.9
-109.9
-113.9
-111.9
-84.9
-103.3 | 2400
2400
2400
2400
2400
2400
2400 | | | 4-17-68
5-15-68
6-21-68
7-17-68
8-29-68
9-16-68 | 20.8
20.2
20.8
21.7
21.4
20.3 | 441.2
441.8
441.2
440.3
440.6
441.7 | 2400
2400
2400
2400
2400
2400 | | | | 6-19-68
7-29-68
8-15-68
9-01-68 | 258.2
264.6
254.3
(6) 258.0 | -118.1
-124.5
-114.2
-117.9 | 2400
2400
2400
2400 | 7S/01W-35C01M | 202.0 | 10-11-67
11-29-67
12-01-67
1-01-68
2-01-68 | 187.0
(6) 188.0
(6) 192.0
193.0
224.0 | 15.0
14.0
10.0
9.0
-22.0 | 2400
2400
2400
2400
2400 | | 7S/01E-01K01M | 179.0 | 10-19-67
11-28-67
12-01-67
1-01-68
2-01-68
3-21-68
4-24-68 | (6) 188.0
(6) 182.0
(6) 180.0
(6) 178.0
(6) 177.0
(6) 174.0
(6) 172.0 | -9.0
-3.0
-1.0
1.0
2.0
5.0
7.0 | 2400
2400
2400
2400
2400
2400
2400 | | | 3-01-68
4-01-68
5-01-68
6-01-68
7-01-68
8-01-68
9-01-68 | 220.0
211.0
236.0
245.0
250.0
254.0
260.0 | -18.0
-9.0
-34.0
-43.0
-48.0
-52.0
-58.0 | 2400
2400
2400
2400
2400
2400
2400 | | | | 5-06-68
6-24-68
7-22-68
8-26-68
9-20-68 | 160.9
160.6
161.8
163.6
168.5 | 18.1
18.4
17.2
15.4
10.5 | 2400
2400
2400
2400
2400 | 7S/02W-03P01M | 216.7 | 10-01-67
11-03-67
11-30-67
12-01-67
1-01-68 | (1) 364.0
(1) 343.0
(3) 352.0
355.0
390.0 | -147.3
-126.3
-135.3
-138.3
-173.3 | 2400
2400
2400
2400
2400 | | 7S/01E-08L01M | 88.0 | 10-28-67
11-28-67
12-01-67
1-25-68
2-27-68
3-26-68
4-01-68
5-01-68 | (6) 155.0
(6) 150.0
(6) 150.0
123.3
124.2
124.7
(6) 127.0
(6) 160.0 | -67.0
-62.0
-62.0
-35.3
-36.2
-36.7
-39.0
-72.0 | 2400
2400
2400
2400
2400
2400
2400
2400 | | | 2-01-68
3-04-68
4-01-68
5-01-68
6-01-68
7-01-68
9-01-68 | 323.0
318.0
310.0
327.0
335.0
339.0
(6) 339.0
339.0 | -106.3
-101.3
-93.3
-110.3
-118.3
-122.3
-122.3 |
2400
2400
2400
2400
2400
2400
2400
2400 | | | | 6-27-68
7-25-68
8-22-68
9-01-68 | (8) 144.2
(8) 156.7
(6) 160.0
(6) 156.0 | -56.2
-68.7
-72.0
-68.0 | 2400
2400
2400
2400 | 7S/02W-04B01M | 218.0 | 11-01-67
12-04-67
1-17-68
2-26-68 | 194.0
196.1
194.2
219.6 | 24.0
21.9
23.8
-1.6 | 2400
2400
2400
2400 | | 7S/01E-09D02M | 95.9 | 10-23-67
11-20-67
12-18-67
1-15-68
2-12-68
3-10-68
4-08-68 | 171.6
157.9
147.6
141.7
139.6
131.2 | -75.7
-62.0
-51.7
-45.8
-43.7
-35.3 | 5000
5000
5000
5000
5000
5000 | | | 3-25-68
4-18-68
5-14-68
6-20-68
7-11-68
8-19-68
9-19-68 | 233.6
(3) 229.8
228.0
225.7
226.0
226.3
229.7 | -15.6
-11.8
-10.0
-7.7
-8.0
-8.3
-11.7 | 2400
2400
2400
2400
2400
2400
2400 | | | | 5-06-68
6-03-68
7-29-68
8-26-68
9-26-68 | 144.3
147.4
167.5
166.1
172.3 | -48.4
-51.5
-71.6
-70.2
-76.4 | 5000
5000
5000
5000
5000 | 7S/02W-22A01M | 340.0 | 11-01-67
12-04-67
1-17-68
2-26-68
3-25-68 | (6) 24.7
(6) 24.5
(6) 23.8
(6) 26.5
28.1 | 315.3
315.5
316.2
313.5
311.9 | 2400
2400
2400
2400
2400 | | 7S/01E-16C05M | 105.0 | 10-23-67
11-20-67
12-18-67
1-15-68
2-12-68
3-10-68
4-08-68
5-06-68
6-03-68
7-29-68
8-26-68
9-26-68 | 234.7
198.8
185.4
173.7
165.2
159.8
162.4
186.6
192.9
228.0
220.5
241.4 | -129.7
-93.8
-80.4
-68.7
-60.2
-54.8
-57.4
-81.6
-87.9
-123.0
-115.5 | 5000
5000
5000
5000
5000
5000
5000
500 | | | 3-25-68
4-18-68
5-01-68
6-20-68
7-30-68
8-20-68
9-23-68 | 28.1
27.7
(6) 35.0
32.1
26.2
27.1
28.9 | 311.9
312.3
305.0
307.9
313.8
312.9
311.1 | 2400
2400
2400
2400
2400
2400
2400 | | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | |--------------------------|---|---|--|---|--|--------------------------------|---|---|--|---|--| | SOUTH BAY AREA 2-09.02 | | | | | | LIVERMORE VALLEY 2- | 10.00 | | | | | | 8S/01E-07H02M | 207.0 | 10-05-67
11-07-67
12-05-67
1-08-68
2-13-68 | 56.6
59.0
63.2
65.5
57.2 | 150.4
148.0
143.8
141.5
149.8 | 2400
2400
2400
2400
2400 | 3S/01E~07Q01M
(Continued) | 321.7 | 6-05-68
7-03-68
8-09-68
9-05-68 | (9)
(9)
(9)
(0) | | 5100
5100
5100
5100 | | | | 3-01-68
4-02-68
5-01-68
6-03-68
7-01-68
8-01-68
9-06-68 | 56.8
(6) 53.0
55.4
57.2
(9)
56.7
56.4 | 150.2
154.0
151.6
149.8 | 2400
2400
2400
2400
2400
2400
2400 | 3S/01E-09R02M | 353.2 | 10-04-67
11-01-67
12-06-67
1-03-68
2-07-68
3-06-68
4-03-68
5-01-68 | 149.5
103.4
85.0
93.3
88.1
88.2
90.7
88.8 | 203.7
249.8
268.2
259.9
265.1
265.0
262.5
264.4 | 5100
5100
5100
5100
5100
5100
5100
5100 | | 85/01E-13H01M | 184.6 | 10-06-67
11-06-67
12-01-67
1-01-68
2-15-68 | (2) 28.5
(6) 29.0
(6) 27.0
(6) 30.0
(8) 21.0 | 156.1
155.6
157.6
154.6
163.6 | 2400
2400
2400
2400
2400 | | | 6-05-68
7-03-68
8-09-68
9-05-68 | (1) 112.0
(1) 121.0
156.1
137.6 | 241.2
232.2
197.1
215.6 | 5100
5100
5100
5100 | | | | 3-06-68
4-04-68
5-03-68
6-05-68
7-03-68
8-02-68
9-10-68 | 20.7
(8) 21.8
(2) 27.3
28.2
27.4
25.9
(8) 23.7 | 163.9
162.8
157.3
156.4
157.2
158.7
160.9 | 2400
2400
2400
2400
2400
2400
2400 | 3S/01E-10Q02M | 368.7 | 10-04-67
11-01-67
12-06-67
1-03-68
2-07-68
3-06-68
4-03-68
5-01-68 | 131.2
125.5
107.0
102.5
100.0
102.5
100.5 | 237.5
243.2
261.7
266.2
268.7
266.2
268.2
268.2 | 5100
5100
5100
5100
5100
5100
5100
5100 | | 85/02E-20F03M | 209.0 | 10-07-67
11-08-67
12-05-67
1-11-68
2-15-68 | 28.3
(1)
26.4
30.0
26.0 | 180.7
182.6
179.0
183.0 | 2400
2400
2400
2400
2400 | | | 6-05-68
7-03-68
8-09-68
9-05-68 | (1) 124.5
(1) 129.5
121.5
122.5 | 244.2
239.2
247.2
246.2 | 5100
5100
5100
5100 | | | | 3-08-68
4-05-68
5-06-68
6-10-68 | 27.2
27.8
(2) 33.3
37.2 | 181.8
181.2
175.7
171.8 | 2400
2400
2400
2400 | 3S/01E-11H01M
3S/01E-17R01M | 372.9
347.0 | 10-00-67
4-00-68
10-04-67 | 124.8
110.5 | 248.1
262.4
234.2 | 5100
5100 | | 8S/02E-22001M | 239.7 | 7-05-68
8-19-68
9-11-68 | (1) 37.0
30.3
(8) 30.3
(8) 10.5
10.4 | 172.0
178.7
178.7
229.2
229.3 | 2400
2400
2400
2400
2400 | 35/01E-1/ROIN | 347.0 | 11-01-67
12-06-67
1-03-68
2-07-68
3-06-68
4-03-68 | (3) 121.8
(3) 115.8
112.8
110.8
109.8 | 225.2
231.2
234.2
236.2
237.2
237.2 | 5100
5100
5100
5100
5100
5100 | | | | 12-05-67
1-11-68
2-16-68
3-08-68
4-05-68 | 11.6
(8) 14.2
12.6
13.1
12.4 | 228.1
225.5
227.1
226.6
227.3 | 2400
2400
2400
2400
2400 | | | 5-01-68
6-05-68
7-03-68
8-09-68
9-05-68 | 112.8
113.8
118.8
112.0
117.9 | 234.2
233.2
228.2
235.0
229.1 | 5100
5100
5100
5100
5100 | | | | 5-06-68
6-10-68
7-10-68
8-19-68
9-04-68 | (1) 13.6
13.8
11.6
11.1
10.7 | 226.1
225.9
228.1
228.6
229.0 | 2400
2400
2400
2400
2400 | 3S/01E-19A03M | 328.0 | 10-04-67
11-01-67
12-06-67
1-03-68
2-07-68 | 113.7
111.7
104.7
101.7
101.2 | 214.3
216.3
223.3
226.3
226.8 | 5100
5100
5100
5100
5100 | | 8S/01W-15B01M | 331.2 | 10-19-67
11-21-67
12-01-67
1-01-68
2-01-68
3-07-68 | 35.4
(6) 34.0
(6) 34.0
(6) 34.0
(6) 34.0
(6) 28.5 | 295.8
297.2
297.2
297.2
297.2
302.7 | 2400
2400
2400
2400
2400
2400 | | | 3-06-68
4-03-68
5-01-68
6-05-68
7-03-68
7-31-68 | 94.7
92.5
92.9
95.7
108.7
110.4 | 233.3
235.5
235.1
232.3
219.3
217.6 | 5100
5100
5100
5100
5100
5100 | | | | 4-01-68
5-01-68
6-11-68
7-19-68 | (6) 24.0
(6) 30.0
32.3
(6) 33.0 | 307.2
301.2
298.9
298.2 | 2400
2400
2400
2400 | 35/02E-10H01M | 551.0 | 9-05-68
10-00-67
4-00-68 | 112.5
109.0
92.1 | 215.5
442.0
458.9 | 5100
5100
5100 | | 9S/02E-01J01M | 314.6 | 10-10-67 | 31.8
(6) 33.0
32.6 | 299.4
298.2
282.0 | 2400
2400
2400 | 3S/02E-16E02M | 508.0 | 10-04-67
11-01-67
12-06-67 | 100.1
100.0
99.7 | 407.9
408.0
408.3 | 5100
5100
5100 | | | | 11-16-67
12-07-67
1-15-68
2-19-68
3-13-68
4-11-68
5-09-68
6-12-68
7-10-68 | (8) 34.8
(8) 30.9
38.8
37.4
(8) 38.2
33.7
47.4
55.2
37.3 | 279.8
283.7
275.8
277.2
276.4
280.9
267.2
259.4
277.3 | 2400
2400
2400
2400
2400
2400
2400
2400 | 17.7 | | 1-03-68
2-07-68
3-06-68
4-03-68
5-01-68
6-05-68
7-03-68
8-09-68
9-05-68 | 99.4
98.6
101.9
98.2
98.4
99.6
99.4
102.9 | 408.6
409.4
406.1
409.8
409.6
408.4
408.6
405.1
405.1 | 5100
5100
5100
5100
5100
5100
5100
5100 | | *95/02E-02J02M | 287.6 | 8-01-68
9-04-68 | 36.0
31.8 | 278.6
282.8
265.3 | 2400
2400
2400 | 3S/02E-19D01M | 411.6 | 10-04-67
11-01-67
12-06-67 | 159.5
159.4
155.0 | 252.1
252.2
256.6 | 5100
5100
5100 | | -75/022-023024 | 207.0 | 11-19-67
12-05-67
1-11-68
2-16-68
3-11-68
4-08-68 | 24.8
25.9
30.0
26.4
26.0
25.2 | 262.8
261.7
257.6
261.2
261.6
262.4 | 2400
2400
2400
2400
2400
2400
2400 | | | 1-03-68
2-07-68
3-06-68
4-03-68
5-01-68
6-05-68 | 153.0
152.5
153.4
153.2
151.9
154.4
164.0 | 259.1
258.2
258.4
259.7
257.2
247.6 | 5100
5100
5100
5100
5100
5100 | | | | 5-08-68
6-10-68
7-09-68
8-01-68
9-04-68 | 29.7
31.9
(2) 34.4
27.4
26.0 | 257.9
255.7
253.2
260.2
261.6 | 2400
2400
2400
2400
2400 | HALF MOON BAY TERRA | CE 2-22.00 | 7-03-68
8-09-68
9-05-68 | 171.1
184.8
191.1 | 240.5
226.8
220.5 | 5100
5100
5100 | | LIVERMORE VALLEY 2-10.00 | | | | | | 5S/05W-19J01M | 53.0 | 4-08-68 | 17.8 | 35.2 | 5050 | | 2S/02E-25N01M | 555.3 | 10-00-67
4-00-68 | 9.6
9.9 | 545.7
545.4 | 5100
5100 | 5S/05W-20L01M | 73.0 | 10-20-67
11-13-67
3-19-68 | 26.9
25.5
17.6 | 46.1
47.5
55.4 | 5050
5050
5050 | |
2S/01W-26C01M | 416.9 | 10-00-67
4-00-68 | 37.5
36.9 | 379.4
380.0 | 5100
5100 | | | 4-08-68
5-17-68
9-17-68 | 14.9
15.8
(1) 25.2 | 58.1
57.2
47.8 | 5050
5050
5050 | | 3S/01E-07Q01M | 321.7 | 10-04-67
11-01-67
12-06-67
1-03-68
2-07-68
3-06-68
4-03-68
5-01-68 | 114.2
109.0
(7)
(7)
(7)
(9)
(9) | 207.5
212.7 | 5100
5100
5100
5100
5100
5100
5100
5100 | 5S/05W-29F04M | 50.0 | 10-20-67
11-13-67
3-19-68
4-08-68
5-13-68
9-17-68 | (1) 20.5
(4) 20.2
(1) 11.7
10.7
14.5
18.7 | 29.5
29.8
38.3
39.3
35.5
31.3 | 5050
5050
5050
5050
5050
5050 | | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYIN
DATA | |----------------------|---|----------------------|---|--|-----------------------------|----------------------|---|----------------------|---|--|----------------------------| | HALF MOON BAY TERRAC | DE 2-22.00 | | | | | SOQUEL VALLEY 3-01.0 | 0 | | | | | | 5S/05W-29N01M | 46.0 | 4-08-68 | 28.5 | 17.5 | 5050 | 11S/01W-15E02M | 87.0 | 10-19-67 | (2) 70.0 | 17.0 | 5050 | | 5S/05W-32K01M | 90.0 | 10-20-67 | 28.3 | 61.7 | 5050 | | | 11-14-67
1-19-68 | 55.9
(2) 55.9 | 31.1 | 5050
5102 | | | | 11-13-67
3-19-68 | 27.3
26.3 | 62.7
63.7 | 5050
5050 | | | 3-19-68
4-18-68 | 56.3 (2) 57.8 | 30.7
29.2 | 5050
5050 | | | | 4-08-68
5-13-68 | 26.1
27.3 | 63.9
62.7 | 5050
5050 | | | 5-15-68
6-19-68 | (2) 58.0
(2) 56.8 | 29.0
30.2 | 5050
5102 | | | | 9-17-68 | 29.8 | 60.2 | 5050 | | | 7-23-68
8-21-68 | (2) 61.2
(2) 55.4 | 25.8
31.6 | 5102
5102 | | 5S/06W-10J01M | 35.0 | 4-08-68 | FLOW | | 5050 | | | 9-16-68 | (2) 59.0 | 28.0 | 5050 | | 6S/05W-08A01M | 108.0 | 11-13-67 | (2) 58.4 | 49.6 | 5050 | PAJARO VALLEY 3-02.0 | 0 | | | | | | 6S/05W-08B01M | 108.0 | 10-20-67
11-13-67 | (2) 60.2 | 47.8 | 5050
5050 | 11S/02E-27A01M | 141.0 | 10-19-67 | 95.9 | 45.1 | 5050 | | | | 3-19-68
4-08-68 | 56.0
56.0 | 52.0
52.0 | 5050
5050 | | | 11-14-67
3-19-68 | 95.2
94.5 | 45.8
46.5 | 5050
5050 | | | | 5-13-68
9-17-68 | 56.2
58.0 | 51.8 | 5050
5050 | | | 4-18-68
5-16-68 | 103.2 | 37.8
37.5 | 5050
5050 | | | | 9-17-00 | 30.0 | 30.0 | 3030 | 120 (01P 2/001V | 0.7 | | | | | | SAN GREGORIO VALLEY | 2-24.00 | | | | | 12S/01E-24G01M | 9.4 | 10-19-67 | 14.4
8.8 | -5.0
0.6 | 5050
5050 | | 7S/05W-14C01M | 80.0 | 10-20-67 | 12.1 | 67.9 | 5050 | - | | 3-19-68
4-18-68 | 1.1 | 8.3
-1.6 | 5050
5050 | | | | 11-13-67
3-19-68 | 12.6
10.6 | 67.4
69.4 | 5050
5050 | 30.00 | | 5-15-68 | 11.3 | -1.9 | 5050 | | | | 4-08-68
5-17-68 | 11.4
(9) | 68.6 | 5050
5050 | 12S/02E-11E04M | 36.0 | 10-19-67
11-14-67 | 28.2
24.2 | 7.8
11.8 | 5050
5050 | | | | 9-17-68 | 13.3 | 66.7 | 5050 | - 13 | | 3-20-68
4-18-68 | 19.9
28.4 | 16.1
7.6 | 5050
5050 | | 7S/05W-15C01M | 80.0 | 4-08-68 | 7.3 | 72.7 | 5050 | | | 5-15-68 | 27.2 | 8.8 | 5050 | | 7S/05W-15E01M | 75.2 | 4-08-68 | 1.9 | 73.3 | 5050 | 12S/02E-16J01M | 20.5 | 10-19-67
11-14-67 | 20.7
16.7 | -0.2
3.8 | 5050
5050 | | 7S/05W-15E02M | 30.0 | 10-20-67
11-13-67 | 14.2
14.2 | 15.8
15.8 | 5050 | | | 3-19-68
4-18-68 | 9.7 | 10.8 | 5050
5050 | | | | 3-19-68 | 11.5 | 18.5 | 5050
5050 | | | 5-16-68 | 18.9 | 1.6 | 5050 | | | • | 4-08-68
5-17-68 | 13.2
12.8 | 16.8
17.2 | 5050
5050 | 12S/02E-31K01M | 30.0 | 12-15-67 | 29.1 | 0.9 | 2100 | | | | 9-17-68 | 15.3 | 14.7 | 5050 | 13S/01E-01A01M | 5.0 | 12-15-67 | 2.7 | 2.3 | 2100 | | 7S/05W-15H02M | 40.0 | 4-08-68 | (9) | | 5050 | 13S/02E-05B01M | 136.0 | 10-19-67 | 141.8 | -5.8 | 5050 | | PESCADERO VALLEY 2-2 | 6.00 | | | | | - | | 11-14-67
3-20-68 | 140.0
135.4 | -4.0
0.6 | 5050
5050 | | 8S/05W-09H01M | 20.0 | 10-20-67 | 4.3 | 15.7 | 5050 | | | 4-18-68
5-15-68 | 147.6
135.4 | -11.6 | 5050
5050 | | 02,00% 05% 02% | | 11-13-67
3-19-68 | 4.3 | 15.7 | 5050
5050 | 13S/02E-06B01M | 15.0 | 10-19-67 | 17.8 | -2.8 | 5050 | | | | 4-08-68 | 3.5 | 16.5 | 5050
5050 | 2907020-000021 | 13.0 | 11-14-67 | 16.6 | -1.6
2.3 | 5050
5050 | | | | 5-17-68
9-17-68 | 5.0 | 17.3
15.0 | 5050 | 2 | | 4-18-68 | 12.5 | 2.5 | 5050 | | 8S/05W-10F01M | 25.0 | 4-18-68 | (1) 11.5 | 13.5 | 5050 | | | 5-15-68 | 13.3 | 1.7 | 5050 | | 8S/05W-10H01M | 40.0 | 4-09-68 | 3.7 | 36.3 | 5050 | 13S/02E-06C01M | 26.0 | 12-15-67 | 23.5 | 2.5 | 2100 | | 8S/05W-10K01M | 37.0 | 10-20-67 | 18.0 | 19.0 | 5050 | 13S/02E-06E02M | 27.8 | 12-15-67 | 24.8 | 3.0 | 2100 | | | | 11-13-67
3-19-68 | (4) 18.3
(4) 11.9 | 18.7
25.1 | 5050
5050 | 13S/02E-06E03M | 30.0 | 12-15-67 | 26.4 | 3.6 | 2100 | | | | 4-08-68
5-17-68 | 12.9
14.8 | 24.1 | 5050
5050 | GILROY-HOLLISTER VAL | LEY 3-03.00 | | | | | | | | 9-17-68 | | 18.2 | 5050 | SOUTH SANTA CLARA CO | | | | | | | 8S/05W-11F01M | 70.0 | 10-20-67
11-13-67 | 15.5
15.0 | 54.5
55.0 | 5050
5050 | 9S/03E-16J01M | 385.7 | 10-09-67 | 99.8 | 285.9 | 2400 | | | | 3-19-68 | 6.0 | 64.0 | 5050
5050 | 75/031-1030111 | 303.7 | 11-14-67 | 105.6 | 280.1 | 2400 | | | | 4-08-68
5-17-68 | 6.9
9.5 | 63.1 | 5050 | | | 1-12-68 | 106.8 | 284.2 | 2400 | | | | 9-17-68 | 16.0 | 54.0 | 5050 | | | 2-16-68
3-11-68 | 102.5 | 283.2
282.6 | 2400 | | 8S/05W-11K02M | 60.0 | 4-08-68 | 1.7 | 58.3 | 5050 | | | 4-10-68
5-08-68 | 104.6
113.2 | 281.1
272.5 | 2400
2400 | | 8S/05W-11M01M | 45.0 | 4-09-68 | 13.0 | 32.0 | 5050 | | | 6-12-68
7-10-68 | 115.4
108.8 | 270.3
276.9 | 2400
2400 | | | | | | | | | | 8-19-68
9-11-68 | 104.3 | 281.4
282.0 | 2400 | | | CENTRAL | COASTAL REGIO | ON 3-00.00 | | | 9S/03E-21K02M | 361.6 | 10-09-67 | 72.6 | 289.0 | 2400 | | SOQUEL VALLEY 3-01.0 | 00 | | | | | 70,000 = 1.1.0=11 | 301.0 | 11-14-67 | 75.9
77.7 | 285.7
283.9 | 2400
2400 | | 11S/01W-09L01M | 124.2 | 10-19-67 | 55.6 | 68.6 | 5050 | | | 1-12-68 | 60.0 | 301.6 | 2400 | | | | 11-14-67
12-11-67 | 55.4
55.2 | 68.8 | 5050
5102 | | | 2-19-68
3-11-68 | 64.6 | 297.0
297.8 | 2400 | | | | 1-19-68
3-19-68 | 57.3
56.1 | 66.9 | 5102
5050 | | | 4-10-68
5-09-68 | (1)
(1) | | 2400 | | | | 4-18-68
5-15-68 | 56.0
58.5 | 68.2
65.7 | 5050
5102 | | | 6-12-68
7-10-68 | 82.2
84.3 | 279.4
277.3 | 2400
2400 | | | | 5-16-68
6-19-68 | 56.3
56.8 | 67.9
67.4 | 5050
5102 | | | 8-19-68
9-11-68 | 95.7
90.4 | 265.9
271.2 | 2400 | | | | 7-23-68
8-21-68 | 56.4
55.7 | 67.8
68.5 | 5102
5102 | 9S/03E-22B03M | 379.1 | 10-09-67 | (1) | | 2400 | | | | 9-16-68 | 56.6 | 67.6 | 5050 | | | 11-15-67
12-06-67 | 88.7
86.6 | 290.4
292.5 | 2400 | | 11S/01W-10C01M | 90.0 | 10-19-67
11-14-67 | 60.3 | 29.7
29.6 | 5050
5050 | | | 1-15-68 | 84.6
88.4 | 294.5 | 2400 | | | | 12-11-67 | 61.1 | 28.9 | 5102 | | | 3-12-68 | 82.8 | 296.3
295.5 | 2400 | | | | 1-19-68
3-19-68 | 62.4
60.1 | 27.6
29.9 | 5102
5050 | | | 4-10-68
5-09-68 | 83.6
87.7 | 293.5 | 2400 | | | | 4-18-68
5-15-68 | 59.6
59.9 | 30.4 | 5050
5102 | | | 6-13-68
7-10-68 | 100.3 | 278.8 | 2400 | | | | 5-16-68
6-19-68 | 60.2
60.3 | 29.8
29.7 | 5050
5102 | | | 8-20-68
9-11-68 | 100.4 | 278.7 | 2400
2400 | | | | 7-23-68
8-21-68 | 64.9
62.0 | 25.1
28.0 | 5102
5102 | | | | | | | | | | 9-16-68 | 61.4 | 28.6 | 5050 | STATE WELL NUMBER | GROUND
SURFACE
ELEVATION | DATE | GROUND SUR-
FAGE TO
WATER
SURFACE | WATER
SURFACE
ELEVATION | AGE NCY
SUPPLYING | STATE WELL
NUMBER | GROUNO
SURFACE
ELEVATION | DATE | GROUND SUR-
FACE TO
WATER | WATER
SURFACE
ELEVATION | AGENCY
SUPPLYING | |----------------------|--------------------------------|--|--|--|--|----------------------|--------------------------------|---|---|--|--| | | IN FEET | | IN FEET | IN FEET | DATA | | IN FEET | | SURFACE
IN FEET | IN FEET | DATA | | SOUTH SANTA CLARA CO | UNTY 3-03.01 | | | | | SOUTH SANTA CLARA C | COUNTY 3-03.01 | | | | | | 9S/03E-23E01M | 362.5 | 10-09-67
11-15-67
12-07-67
1-15-68
2-19-68
3-12-68 | 101.8
113.2
90.7
83.3
86.9
88.4 | 260.7
249.3
271.8
279.2
275.6
274.1 | 2400
2400
2400
2400
2400
2400 | 10S/04E-18G02M | 259.5 | 10-19-67
11-14-67
3-21-68
4-15-68
5-14-68 | 51.5
49.9
51.1
50.4
57.8 | 208.0
209.6
208.4
209.1
201.7 | 5050
5050
5050
5050
5050 | | | | 4-10-68
5-09-68
6-13-68
7-10-68
8-20-68
9-11-68 | 89.2
94.8
(1)
(1)
(1) | 273.3
267.7 | 2400
2400
2400
2400
2400
2400 | 10S/04E-31G04M | 197.5 | 10-16-67
11-27-67
12-18-67
1-15-68
2-19-68
3-18-68 | 26.5
23.5
22.5
21.5
20.5
19.5 |
171.0
174.0
175.0
176.0
177.0
178.0 | 5200
5200
5200
5200
5200
5200 | | 9S/03E-26P01M | 329.1 | 10-09-67
11-15-67
12-07-67
1-15-68
2-19-68 | (2) 77.7
64.9
59.2
59.5
58.4 | 251.4
264.2
269.9
269.6
270.7 | 2400
2400
2400
2400
2400 | | | 4-15-68
5-20-68
6-17-68
7-15-68
8-19-68
9-16-68 | 19.5
29.5
34.5
42.5
44.5
45.5 | 178.0
168.0
163.0
155.0
153.0 | 5200
5200
5200
5200
5200
5200
5200 | | | | 3-12-68
4-10-68 | 57.3
(1) | 271.8 | 2400
2400 | 10S/04E-35E01M | 248.0 | 4-15-68 | 79.8 | 168.2 | 5050 | | | | 5-09-68
6-13-68
7-11-68
8-01-68
9-11-68 | (4) 69.7
(1)
(4) 97.6
(1)
86.4 | 259.4
231.5
242.7 | 2400
2400
2400
2400
2400 | 11S/04E-06B01M | 197.2 | 10-16-67
11-27-67
12-18-67
1-15-68
2-19-68 | (7)
(7)
(7)
(7) | | 5200
5200
5200
5200 | | 9S/03E-27CO2M | 347.0 | 10-09-67
11-15-67
12-07-67
1-15-68
2-19-68
3-12-68
4-10-68 | 64.3
67.0
65.7
64.7
62.1
63.7
62.9
71.8 | 282.7
280.0
281.3
282.3
284.9
283.3
284.1
275.2 | 2400
2400
2400
2400
2400
2400
2400
2400 | | | 3-18-68
4-15-68
5-20-68
6-17-68
7-15-68
8-19-68
9-16-68 | (7)
(7)
(7)
(7)
(7)
(9)
(3)
53.0 | 144.2 | 5200
5200
5200
5200
5200
5200
5200
5200 | | | | 5-27-68
6-13-68
7-11-68
8-01-68
9-11-68 | 82.0
61.3
(1)
92.8 | 265.0
285.7
254.2 | 2400
2400
2400
2400 | 11S/04E-06D01M | 211.0 | 10-16-67
11-27-67
12-18-67
1-15-68
2-19-68 | 46.0
44.0
42.0
40.0
38.0 | 165.0
167.0
169.0
171.0 | 5200
5200
5200
5200
5200 | | 9S/03E-29B01M | 397.6 | 4-09-68 | 11.5 | 386.1 | 5050 | | | 3-18-68
4-15-68 | 39.0
37.0 | 172.0
174.0 | 5200
5200 | | 9S/03E-34D02M | 327.0 | 10-09-67
11-15-67
12-07-67
1-15-68
2-19-68
3-12-68 | 60.6
62.9
54.3
49.6
48.4
48.7 | 266.4
264.1
272.7
277.4
278.6
278.3 | 2400
2400
2400
2400
2400
2400 | | | 5-20-68
6-17-68
7-15-68
8-19-68
9-16-68 | 48.0
53.0
63.0
65.0 | 163.0
158.0
148.0
148.0
146.0 | 5200
5200
5200
5200
5200 | | | | 4-11-68
5-09-68
6-13-68
7-11-68
8-20-68 | (2) 58.8
68.7
67.5
(2) 77.7
(2) 84.6 | 268.2
258.3
259.5
249.3
242.4 | 2400
2400
2400
2400
2400
2400 | 11S/04E-06H01M | 191.5 | 10-16-67
11-27-67
12-18-67
1-15-68
2-19-68
3-18-68 | 29.0
26.0
24.0
23.0
22.0
21.0 | 162.5
165.5
167.5
168.5
169.5
170.5 | 5200
5200
5200
5200
5200
5200 | | 9S/03E-34Q01M | 314.2 | 10-09-67
11-15-67
12-07-67
1-15-68
2-19-68 | 42.8
(1)
38.2
37.9
37.6 | 271.4
276.0
276.3
276.6 | 2400
2400
2400
2400
2400 | | | 4-15-68
5-20-68
6-17-68
7-15-68
8-19-68
9-16-68 | 20.0
31.0
36.0
44.0
48.0
46.0 | 171.5
160.5
155.5
147.5
143.5
145.5 | 5200
5200
5200
5200
5200
5200 | | | | 3-12-68
4-11-68
5-09-68
6-13-68
7-11-68
8-20-68
9-12-68 | 36.4
(7)
43.3
48.6
53.4
58.9
55.5 | 277.8
270.9
265.6
260.8
255.3
258.7 | 2400
2400
2400
2400
2400
2400
2400
2400 | 11S/04E-06P02M | 201.7 | 10-16-67
11-27-67
12-18-67
1-15-68
2-19-68
3-18-68 | 35.0
32.0
31.0
29.0
29.0
28.0 | 166.7
169.7
170.7
172.7
172.7
173.7 | 5200
5200
5200
5200
5200
5200 | | 9S/03E-36E02M | 309.3 | 10-10-67
11-15-67
12-07-67
1-15-68
2-19-68 | 84.9
77.4
75.2
57.5
56.9 | 224.4
231.9
234.1
251.8
252.4 | 2400
2400
2400
2400
2400 | | | 4-15-68
5-20-68
6-17-68
7-15-68
8-19-68
9-16-68 | 27.0
35.0
39.0
45.0
46.0
57.0 | 174.7
166.7
162.7
156.7
155.7 | 5200
5200
5200
5200
5200
5200 | | | | 3-12-68
4-11-68
5-09-68
6-13-68
7-11-68
8-20-68 | 57.3
(7)
78.7
87.6
89.9
99.2 | 252.0
230.6
221.7
219.4
210.1 | 2400
2400
2400
2400
2400
2400 | 11S/04E-08K02M | 179.0 | 10-19-67
11-14-67
3-20-68
4-16-68
5-14-68 | 21.7
20.2
15.0
15.7
21.4 | 157.3
158.8
164.0
163.3
157.6 | 5050
5050
5050
5050
5050 | | 9S/03E-36F03M | 322.0 | 9-12-68 | 97.8
83.3 | 211.5 | 2400 | SAN BENITO COUNTY 3 | 3-03-02 | | | | | | 90/03E-30E03E | 322.0 | 11-15-67
12-07-67
1-15-68
2-19-68
3-12-68
4-11-68 | 85.4
81.5
78.2
79.5
77.4
(7) | 236.6
240.5
243.8
242.5
244.6 | 2400
2400
2400
2400
2400
2400
2400 | 11S/05E-13D01M | 255.7 | 10-19-67
11-14-67
3-20-68
4-17-68
5-14-68 | 22.5
22.2
18.6
29.9
34.0 | 233.2
233.5
237.1
225.8
221.7 | 5050
5050
5050
5050
5050 | | | | 5-09-68
6-13-68 | 94.3
101.4 | 227.7
220.6 | 2400
2400 | 12S/04E-20C01M | 152.9 | 2-07-68 | 25.4 | 127.5 | 5151 | | 10S/03E-02K03M | 290.0 | 7-11-68
8-20-68
9-12-68 | 105.5
118.8
119.5 | 216.5
203.2
202.5 | 2400
2400
2400
5050 | 12S/05E-10R01M | 211.6 | 10-19-67
11-14-67
3-20-68
4-17-68 | 85.1
83.9
78.6
76.9 | 126.5
127.7
133.0
134.7 | 5050
5050
5050
5050 | | | | 11-14-67
3-21-68 | 40.0
41.9 | 250.0
248.1 | 5050
5050 | | | 5-14-68 | 78.8 | 132.8 | 5050 | | 10S/03E-13J03M | 251.0 | 4-09-68
5-14-68
10-19-67
11-14-67 | 41.7
48.9
38.0
35.6 | 248.3
241.1
213.0
215.4 | 5050
5050
5050
5050 | 12S/05E-12M04M | 215.0 | 10-19-67
11-14-67
3-20-68
4-17-68
5-14-68 | 79.3
78.7
75.6
76.5
76.4 | 135.7
136.3
139.4
138.5
138.6 | 5050
5050
5050
5050
5050 | | 10S/03E-36E03M | 220.0 | 3-21-68
4-15-68
5-14-68 | 37.9
47.2
51.1
36.8 | 213.1
203.8
199.9 | 5050
5050
5050
5050 | 12S/05E-33A01M | 280.0 | 10-19-67
11-14-67
3-20-68
4-17-68 | 85.5
83.6
79.0
79.2 | 194.5
196.4
201.0
200.8 | 5050
5050
5050
5050 | | ACUGOC*4C0 /CO1 | 220.0 | 10-19-67
11-14-67
3-20-68
4-15-68
5-14-68 | 36.8
34.6
34.0
35.8
33.6 | 183.2
185.4
186.0
184.2
186.4 | 5050
5050
5050
5050
5050 | | | 5-15-68 | 82.8 | 197.2 | 5050 | | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | |-----------------------|---|----------------------------------|---|--|-----------------------------|----------------------|---|---------------------|---|--|-----------------------------| | SAN BENITO COUNTY 3- | 03.02 | | | | | UPPER VALLEY AREA 3 | -04.05 | | | | | | 12S/05E-35N02M | 303.0 | 10-19-67 | 142.4 | 160.6 | 5050 | 20S/08E-05R01M | 337.0 | 6-19-68 | 77.0 | 260.0 | 2100 | | | | 11-14-67
3-20-68 | 132.2
105.7 | 170.8
197.3 | 5050
5050 | (Continued) | | 7-16-68
8-20-68 | (1)
75.5 | 261.5 | 2100
2100 | | | | 4-17-68
5-15-68 | 110.6
116.1 | 192.4
186.9 | 5050
5050 | | | 9-18-68 | (1) | | 2100 | | 13S/05E-11Q01M | 325.5 | 2-05-68 | 37.1 | 288.4 | 5151 | 21S/09E-06K01M | 344.0 | 12-19-67 | (4) | | 2100 | | | | | | | | 21S/10E-32N01M | 400.0 | 12-26-67 | 23.0 | 377.0 | 2100 | | SALINAS VALLEY 3-04. | | | | | | 22S/10E-16K01M | 472.0 | 12-26-67 | 71.3 | 400.7 | 2100 | | PRESSURE AREA 180 FO | | | | | | PASO ROBLES BASIN 3 | -04.06 | | | | | | 14S/02E-03C01M | 10.6 | 12-15-67 | 13.9 | -3.3 | 2100 | 24S/10E-11C01M | 620.0 | 12-01-67 | (0) | | 5117 | | 15S/02E-01Q01M | 42.0 | 10-18-67
11-15-67
12-13-67 | (1)
47.4
33.0 | -5.4
9.0 | 2100
2100
2100 | 24S/11E-25N01M | 603.3 | 3-29-68
9-27-68 | (1)
(1) | | 5117
5117 | | | | 1-16-68
2-14-68
3-20-68 | 31.7
27.8
30.9 | 10.3
14.2
11.1 | 2100
2100
2100 | 24S/11E-33R01M | 565.0 | 3-29-68
9-27-68 | (1) | | 5117
5117 | | | | 4-15-68
5-20-68 | (1)
(1) | 11.1 | 2100
2100
2100 | 24S/11E-35J01M | 616.8 | 10-18-67 | 61.7 | 555.1 | 5117 | | | | 6-17-68
7-15-68 | (1)
52.7 | -10.7 | 2100
2100 | | | 4-05-68 | 61.5 | 555.3 | 5117 | | | | 8-18-68
9-16-68 | 53.9 | -11.9 | 2100
2100 | 24S/12E-17N01M | 770.0 | 10-01-67 | (0) | | 5117 | | 15S/03E-16M01M | 58.0 | 12-12-67 | 36.1 | 21.9 | 2100 | 24S/15E-33C01M | 1225.0 | 10-19-67
4-11-68 | 38.3 | 1186.7 | 5117
5117 | | 15S/04E-33A01M | 125.0 | 12-15-67 | 81.1 | 43.9 | 2100 | 25S/11E-35G01M | 895.0 | 10-18-67 | 63.3 | 831.7 | 5117 | | 16S/04E-11D01M | 110.0 | 12-15-67 | 47.8 | 62.2 | 2100 | | | 4-08-68 | 62.5 | 832.5 | 5117 | | | OT ADMITTED 2 0/ | 0.1 | | | | 25S/12E-17J01M | 640.0 | 10-18-67
5-08-68 | 70.5
68.5 | 569.5
571.5 | 5117
5117 | | 13S/02E-31Q01M | 11.0 . | 12-12-67 | 12.0 | -1.0 | 2100 | 25S/12E-17R01M | 640.0 | 10-18-67
4-08-68 | 63.5
51.4 | 576.5
588.6 | 5117
5117 | | 14S/03E-18J01M | 69.0 | 10-18-67 | (1) | 04.0 | 2100 | 25S/12E-26K01M | 749.0 | 10-31-67 | 111.4 | 637.6 | 5117 | | | | 11-14-67
12-21-67
1-16-68 | 93.3
69.6
67.0 | -24.3
-0.6
2.0 | 2100
2100
2100 | 25S/13E-11E01M | 1185.0 | 4-08-68 | 122.3 | 626.7 | 5117 | | | | 2-14-68
3-20-68 | 75.7
72.0 | -6.7
-3.0 |
2100
2100 | | | 4-09-68 | 60.4 | 1124.6 | 5117 | | | | 4-15-68
5-20-68 | 77.0
89.3 | -8.0
-20.3 | 2100
2100 | 25S/16E-17L01M | 1165.0 | 10-19-67
4-11-68 | 29.4
30.3 | 1135.6
1134.7 | 5117
5117 | | | | 6-17-68
7-15-68
8-18-68 | 98.0
(1)
102.0 | -29.0
-33.0 | 2100
2100
2100 | 25S/16E-30M01M | 1218.0 | 10-19-67
4-11-68 | 69.2
67.8 | 1148.8
1150.2 | 5117
5117 | | | | 9-16-68 | 99.0 | -30.0 | 2100 | 26S/12E-04N01M | 675.0 | 10-18-67 | 46.9 | 628.1 | 5117 | | EAST SIDE AREA 3-04.0 | 02 | | | | | | | 4-08-68 | 44.3 | 630.7 | 5117 | | 16S/05E-17R01M | 181.0 | 12-20-67 | 87.3 | 93.7 | 2100 | 26S/12E-26E01M | 840.0 | 10-16-67
9-26-68 | 203.4
205.0 | 636.6
635.0 | 5117
5117 | | ARROYO SECO CONE 3-04 | 4.04 | | | | | 26S/12E-35M01M | 818.0 | 10-16-67 | (3) | | 5117 | | 18S/06E-15M01M | 277.0 | 10-19-67 | 90.6 | 186.4 | 2100 | 26S/13E-10D01M | 800.0 | 10-19-67
4-09-68 | 27.8
14.1 | 772.2
785.9 | 5117
5117 | | | | 11-17-67
12-20-67 | 91.0
91.7 | 186.0
185.3 | 2100
2100 | | | 9-20-68 | 32.3 | 767.7 | 5117 | | | | 1-19-68
2-16-68 | (1)
92.0 | 185.0 | 2100
2100 | 26S/13E-34B01M | 1005.0 | 10-27-67
4-10-68 | 159.3
157.2 | 845.7
847.8 | 5117
5117 | | | | 3-19-68
4-17-68 | 90.9 | 186.1 | 2100
2100 | | | 9-24-68 | 163.0 | 842.0 | 5117 | | | | 5-20-68
6-18-68 | 95.1 | 181.9 | 2100
2100 | 26S/14E-16L01M | 1018.0 | 4-11-68 | (9) | | 5117 | | | | 7-17-68 | (1)
(1) | | 2100 | 26S/14E-35D01M | 1135.0 | 10-19-67 | 120.3 | 1014.7 | 5117 | | | | 8-20-68
9-18-68 | 96.0 | 181.0 | 2100
2100 | 26S/15E-02B01M | 1115.0 | 10-20-67 | 30.8
30.6 | 1084.2 | 5117 | | 19S/06E-11C01M | 373.0 | 10-19-67
11-17-67 | 179.1 | 193.9 | 2100
2100 | 26S/15E-28Q02M | 1112.0 | 4-11-68
10-20-67 | 61.4 | 1084.4 | 5117 | | | | 12-20-67 | 171.3 | 201.7 | 2100 | | | | | | | | | | 1-19-68
2-16-68 | (1)
(9) | | 2100
2100 | 26S/15E-29N01M | 1133.0 | 10-20-67 | 148.0 | 985.0 | 5117 | | | | 3-19-68
4-18-68 | (3)
(1) | | 2100
2100 | 27S/12E-21N01M | 748.0 | 10-16-67 | 13.7 | 734.3 | 5117 | | | | 5-21-68
6-19-68 | 191.0 | 182.0 | 2100
2100 | 27S/13E-24N01M | 1030.0 | 10-19-67
4-10-68 | 19.0
19.1 | 1011.0
1010.9 | 5117
5117 | | | | 7-17-68
8-20-68 | (1)
(1) | | 2100
2100 | 27S/13E-32B01M | 1105.0 | 10-19-67 | 56.7 | 1048.3 | 5117 | | | | 9-18-68 | 206.0 | 167.0 | 2100 | 27S/15E-10R02M | 1130.0 | 10-28-67 | 62.8 | 1067.2 | 5117 | | UPPER VALLEY AREA 3- | 04.05 | | | | | 27S/15E-13A01M | 1155.0 | 10-28-67 | 15.8 | 1139.2 | 5117 | | 19S/07E-10P01M | 315.0 | 10-19-67 | 98.4 | 216.6 | 2100 | 27S/16E-21E02M | 1255.0 | 10-28-67 | 61.7 | 1193.3 | 5117 | | | | 11-17-67
12-20-67 | 83.0
79.1 | 232.0 | 2100
2100 | 28S/12E-10C01M | 825.0 | 10-11-67 | (8) | | 5117 | | | | 1-19-68
2-16-68 | 80.0
87.2 | 235.0
227.8 | 2100
2100 | 28S/12E-10R02M | 805.0 | 10-12-67 | 23.5 | 781.5 | 5117 | | | | 3-18-68
5-21-68 | 90.5 | 224.5 | 2100
2100 | 28S/12E-13N01M | 850.0 | 10-01-67 | (0) | | 5117 | | | | 6-19-68
7-17-68
8-20-68 | 90.0
(1)
(1) | 225.0 | 2100
2100
2100 | 28S/12E-14G01M | 824.6 | 10-11-67
4-03-68 | 1.2 | 823.4 | 5117
5117 | | 000 (000 | | 9-18-68 | (1) | | 2100 | 28S/13E-04K01M | 1199.5 | 10-19-67 | 55.2 | 1144.3 | 5117 | | 20S/08E-05R01M | 337.0 | 10-20-67
11-16-67 | 67.1 | 269.9 | 2100
2100 | | | 4-10-68
9-30-68 | 59.9
65.5 | 1139.6
1134.0 | 5117
5117 | | | | 12-20-67 | 61.0 | 276.0
276.2 | 2100
2100 | 28S/13E-04K02M | 1195.0 | 10-19-67 | 80.3 | 1114.7 | 5117 | | | | 2-16-68
3-18-68
4-18-68 | 61.0
(1)
(1) | 276.0 | 2100
2100
2100 | | | 4-10-68
9-30-68 | 81.7
84.3 | 1113.3 | 5117
5117 | | | | 5-20-68 | 72.5 | 264.5 | 2100 | 28S/14E-07E01M | 1150.0 | 10-01-67 | (0) | | 5117 | | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENC
SUPPLYI
DATA | |-----------------------|---|--|---|--|--|----------------------|---|--|--|--|--| | ASO ROBLES BASIN 3-04 | .06 | | | | | CARMEL VALLEY 3-07.0 | 00 | | | | | | 28S/16E-23MO1M | 1440.0 | 10-28-67
4-17-68 | DRY
48.7 | 1391.3 | 5117
5117 | 16S/01E-22E01M | 82.0 | 10-23-67
11-22-67 | 28.9
29.2 | 53.1
52.8 | 2100 | | 29S/13E-05F03M | 916.1 | 10-11-67
4-03-68 | 16.9
15.2 | 899.2
900.9 | 5117
5117 | | | 1-02-68
1-22-68
2-20-68 | 28.4
27.9
27.1 | 53.6
54.1
54.9 | 2100
2100
2100 | | 29S/13E-05K02M | 928.0 | 10-11-67 | 10.7 | 917.3 | 5117 | _ | | 3-21-68
4-19-68 | 27.5 | 54.5 | 210
210 | | 29S/13E-06A01M | 920.0 | 4-03-68 | 8.6
68.8 | 919.4
851.2 | 5117 | | | 5-17-68
6-20-68
7-18-68 | 28.5
30.0
29.3 | 53.5
52.0
52.7 | 210
210
210 | | 29S/13E-19H01M | 1002.0 | 4-03-68 | 23.1 | 878.8
978.9 | 5117 | | | 8-21-68
9-20-68 | 30.3
36.0 | 51.7
46.0 | 210
210 | | | | 4-03-68 | 3.7 | 998.3 | 5117 | 16S/01E-23F01M | 109.0 | 10-23-67
11-22-67
1-02-68 | 26.3
27.2
25.3 | 82.7
81.8
83.7 | 210
210
210 | | EASIDE AREA 3-04-08 | | | | | - | | | 1-22-68
2-20-68 | 25.7
25.2 | 83.3
83.8 | 210
210 | | 14S/02E-31MO1M | 119.9 | 10-26-67
11-29-67
1-10-68
2-15-68
3-13-68
4-17-68 | 129.5
125.4
122.5
121.5
120.9
126.7 | -9.6
-5.5
-2.6
-1.6
-1.0
-6.8 | 5005
5005
5005
5005
5005
5005 | | | 3-21-68
4-19-68
5-17-68
6-20-68
7-18-68
8-21-68 | 26.0
24.3
26.5
26.4
27.3
32.3 | 83.0
84.7
82.5
82.6
81.7
76.7 | 210
210
210
210
210
210 | | 15S/01E-14N01M | 144.6 | 10-26-67
11-29-67 | (7)
111.6 | 33.0 | 5005
5005 | 16S/01E-25B01M | 140.0 | 9-20-68 | 32.7
19.2 | 76.3 | 210 | | | | 1-10-68
2-15-68
3-13-68
4-17-68 | 117.3
114.1
114.5
117.4 | 27.3
30.5
30.1
27.2 | 5005
5005
5005
5005 | | | 11-22-67
1-03-68
1-22-68
2-20-68
3-21-68 | 20.3
15.9
15.5
14.9
15.5 | 119.7
124.1
124.5
125.1
124.5 | 210
210
210
210
210 | | ARMEL VALLEY 3-07.00 | | | | | | | | 4-19-68
5-17-68 | (1)
17.5 | 122.5 | 210
210 | | 16S/01E-16L01M | 75.0 | 10-23-67
11-22-67 | (1)
21.0 | 54.0 | 2100
2100 | | | 6-20-68
7-18-68
8-21-68 | 18.8
(1)
(1) | 121.2 | 210
210
210 | | | | 12-29-67
1-22-68
2-20-68 | 19.1
18.9
18.6 | 55.9
56.1
56.4 | 2100
2100
2100 | | | 9-20-68 | 20.1 | 119.9 | 210 | | | | 3-21-68
4-19-68
5-17-68 | (1)
17.0
21.1 | 58.0 | 2100
2100
2100 | WEST SANTA CRUZ TERM | 65.0 | 12-11-67 | 62.2 | 2.8 | 510 | | | | 6-20-68
7-18-68 | 21.3
21.5 | 53.7
53.5 | 2100
2100 | | | 5-15-68 | (8) 81.5 | -16.5 | 510 | | | | 8+21-68
9-20-68 | 20.9 | 54.1
55.4 | 2100
2100 | 11S/02W-22K01M | 30.0 | 12-11-67
5-15-68 | 67.7
(8) 42.4 | -37.7
-12.4 | 510 | Appendix D . SURFACE WATER QUALITY #### INTRODUCTION This appendix presents surface water quality data collected during the period from October 1, 1967, through September 30, 1968. The data were collected from 57 stream and estuarine stations in the Central Coastal Area by the U. S. Bureau of Reclamation and the Department of Water Resources. The U. S. Bureau of Reclamation data were collected for its Delta-San Luis Drainage Surveillance Program and are basically confined to the Sacramento-San Joaquin Delta and Suisun Bay, the latter being included in this report. The Department of Water Resources Laboratory uses procedures from "Standard Methods for the Examination of Water and Waste Water", 12th Edition, 1967, for the determination of mineral, nutrient, and biological constituents. Pesticides are determined in accordance with the "Guide to the Analysis of Pesticide Residues", U. S. Department of Health, Education and Welfare, 1965. U. S. Bureau of Reclamation laboratory services are provided by the U. S. Air Force at McClellan Air Force Base. It uses procedures in accordance with the "FWPCA Methods for Chemical Analysis of Water and Wastes", November 1968, for all parameters. Two numbering systems are used in this bulletin for identifying water quality stations. The first is for those stations for which the flow of water can be measured readily as in streams and rivers. This system is that which has been used in prior editions of the Bulletin No. 130 series and is also described in the departmental publication "Index of Stream Gaging Stations in and Adjacent to California, 1966". The second system is used for those stations which do not fit the first. This system is described as follows: The first two digits
identify the hydrologic basin as in the first system. The third digit identifies the type of water body being identified and for this publication is a "B" for Bay system or "D" for Delta system. The next digit is the last digit of the latitude in degrees, "3" for 33°, or "9" for 29°. The next three digits are the minutes of latitude to the tenth of a minute. The last four digits are longitude in the same manner as latitude. | Example | EU B 807.3 143.6 | |---------|------------------------| | EO | San Francisco Bay | | В | Water Body Bay | | 8 | 38° Latitude | | 07.3 | 07.3 Minutes Latitude | | 1 | 121° Longitude | | 45.6 | 45.6 Minutes Longitude | | | | #### SURFACE WATER MEASUREMENT STATIONS #### Hydrographic Area E | San | Francisco | Bay | (E0) | |-----|-----------|-----|------| Suisun Bay at Benicia EO 3300 THE RESERVE OF THE PERSON NAMED IN #### Napa-Solano (E3) Rector Reservoir near Yountville E3 1400 ## SURFACE WATER QUALITY STATIONS #### Hydrographic Area D | Santa Cruz (DO) | | |-------------------------|------------------------------| | DO 1200.00 San Lo | orenzo River at Big Trees | | D0 3100.00 Soque | l Creek at Soquel | | Pajaro-San Benito River | s (D1) | | D1 1250.00 Pajar | o River at Chittenden | | D1 1371.50 Uvas | Creek near Morgan Hill | | D1 2450.00 San B | enito River near Bear Valley | | Fir | e Station | | Lower Salinas River (D2 | <u>)</u> | | D2 1220.00 Salin | as River near Spreckles | | D2 1310.10 Salin | as River near Chular | | D2 1850.00 Salin | as River near Bradley | #### Upper Salinas River (D3) D3 1450.00 Salinas River at Paso Robles D3 3250.00 Nacimiento River near San Miguel ## Monterey Coast (D4) D4 1200.00 Carmel River at Robles Del Rio ## Hydrographic Area E ## San Francisco Bay (E0) EO B 736.2 211.6 San Francisco Bay at San Mateo Bridge EO B 748.4 228.2 San Francisco Bay at Fort Point EO B 749.2 222.4 San Francisco Bay at Treasure Island EO B 757.7 225.6 San Pablo Bay at Point San Pablo ## Napa-Solano (E3) E3 1100.50 Napa River at Dutton Landing E3 1500.00 Napa River near St. Helena #### Alameda Creek (E5) E5 1150.00 Alameda Creek near Niles E5 1400.00 Arroyo Del Valle near Livermore ## Santa Clara Valley (E6) E6 4250.00 Coyote Creek near Madrone E6 5250.00 Los Gatos Creek at Los Gatos ## Hydrographic Area F | Mendocino Coast (1 | F8) | |--------------------|-------------------------------| | F8 2100.00 | Navarro River near Navarro | | F8 2720.00 | Big River near Mouth | | F8 3080.50 | Noyo River near Fort Bragg | | Russian River (F9) | Σ | | F9 1080.50 | Russian River at Guerneville | | F9 1500.00 | Russian River near Healdsburg | | F9 1765.00 | Russian River near Hopland | | F9 4900.00 | Russian River, East Fork, at | | | Potter Valley Powerhouse | SURFACE WATER OBSERVATION STATIONS 1967-68 SURFACE WATER OBSERVATION STATIONS 1967-68 SURFACE WATER OBSERVATION STATIONS 1967-68 SAMPLING STATION DATA AND INDEX | | Station | Loca | otion | Beginning | Frequency | Analyses | |---|----------------------------|----------|-----------|------------|--------------|--------------------| | Station | Number | Latitude | Longitude | Of Record | Of Sampling | On Page | | ALAMEDA CREEK NEAR NILES | E5 1150.00 | 37 35 14 | 121 57 35 | Dec. 1951 | Monthly | 81, 84, 94 | | ARROYO DEL VALLE NEAR LIVERMORE | E5 1400.00 | 37 37 24 | 121 45 28 | July 1958 | Monthly | 81, 84, 94 | | BIG RIVER NEAR MOUTH | F8 2720.00 | 39 18 53 | 123 42 15 | Jan. 1959 | Annually | 82 | | CARMEL RIVER AT ROBLES DEL RIO | D4 1200.00 | 36 28 28 | 121 43 40 | Jan. 1952 | Annually | 73, 84 | | CARQUINEZ STRAIT AT CROCKETT
(CROCKETT) | E0B80352133
(E03100.90) | 38 03 28 | 122 13 18 | 1946 | Four-day | 87 | | CARQUINEZ STRAIT AT MARTINEZ
(MARTINEZ) | E0B80192078
(E03300.10) | 38 01 55 | 122 07 46 | 1926 | Four-day | 87 | | COYOTE CREEK NEAR MADRONE | E6 4250.00 | 37 10 06 | 121 38 55 | Jan. 1952 | Annually | 82, 84 | | GRIZZLY BAY AT DOLPHIN NEAR SUISUN SLOUGH | E0B80702023 | 38 07 02 | 122 02 19 | Jan. 1968 | Random | 78, 93 | | HONKER BAY NEAR WHEELER POINT | E0B80441562 | 38 04 38 | 121 56 12 | Jan. 1968 | Random | 77, 93 | | LOS GATOS CREEK AT LOS GATOS | E6 5250.00 | 37 12 30 | 121 59 15 | Dec. 1951 | Annually | 82, 84 | | MONTEZUMA SLOUGH ABOVE HUNTER CUT | Е0Б81002025 | 38 09 58 | 122 02 30 | Sept. 1968 | | 80 | | MONTEZUMA SLOUGH AT FROST SLOUGH | E0B81031574 | 38 10 19 | 121 57 23 | Sept. 1968 | | 80 | | MONTEZUMA SLOUGH AT MEINS LANDING | E0B80841545 | 38 08 22 | 121 54 30 | Sept. 1968 | | 80 | | MONTEZUMA SLOUGH AT SACRAMENTO RIVER | E0B80431518 | 38 04 16 | 121 51 49 | Sept. 1968 | | 77 | | MONTEZUMA SLOUGH BELOW GRIZZLY SLOUGH | E0B80631533 | 38 06 18 | 121 53 18 | Sept. 1968 | | 78 | | MONTEZUMA SLOUGH NEAR BELDONS LANDING | E0B81121582 | 38 11 13 | 121 58 10 | July 1968 | Random | 80 | | MONTEZUMA SLOUGH NEAR MOLENA | E0B80761538 | 38 07 34 | 121 53 47 | Sept. 1968 | | 79 | | MONTEZUMA SLOUGH NEAR MONTEZUMA STATION | E0B80531529 | 38 05 20 | 121 52 57 | Sept. 1968 | - | 78 | | MONTEZUMA SLOUGH NEAR MOUTH | Е0В80842036 | 38 08 26 | 122 03 36 | Sept. 1968 | | 80 | | MONTEZUMA SLOUGH NEAR TREE SLOUGH | E0B81062006 | 38 10 36 | 122 00 39 | Sept. 1968 | | 80 | | NACIMIENTO RIVER NEAR SAN MIGUEL | D3 3520.00 | 35 47 00 | 120 47 20 | July 1958 | Semiannually | 73, 84 | | NAPA RIVER AT DUTTONS LANDING | E3 1100.50 | 38 12 28 | 122 18 20 | Sept. 1965 | Bimonthly | 81, 84, 94, 96, 97 | | NAPA RIVER NEAR ST. HELENA | E3 1500.00 | 38 29 40 | 122 25 50 | Dec. 1951 | Annually | 81, 84 | | NAVARRO RIVER NEAR NAVARRO | F8 2100.00 | 39 10 15 | 123 39 55 | Jan. 1959 | Annually | 82 | | NOYO RIVER NEAR FORT BRAGG | F8 3080.50 | 39 26 05 | 123 44 59 | Jan. 1951 | Annually | 82 | | PAJARO RIVER AT CHITTENDEN | D1 1250.00 | 36 54 01 | 121 35 48 | Dec. 1951 | Bimonthly | 72, 85, 91 | | RUSSIAN RIVER AT GUERNEVILLE | F9 1080.50 | 38 30 00 | 122 56 05 | April 1951 | Bimonthly | 82, 85, 94 | | RUSSIAN RIVER NEAR HEALDSBURG | F9 1500.00 | 38 44 59 | 123 05 28 | April 1951 | Annually | 82, 85 | | RUSSIAN RIVER NEAR HOPLAND | F9 1765.00 | 39 01 35 | 123 07 45 | April 1951 | Annually | 82, 85 | | RUSSIAN RIVER, EAST FORK, AT POTTER VALLEY POWERHOUSE | F9 4900.00 | 39 21 42 | 123 07 38 | May 1951 | Annually | 82, 85 | | SACRAMENTO RIVER AT CHIPPS ISLAND | E0B80281550 | 38 02 47 | 121 55 02 | Jan. 1968 | Random | 75, 92 | | SACRAMENTO RIVER AT COLLINSVILLE (COLLINSVILLE) | B9D80441513
(E31110.00) | 38 04 25 | 121 51 18 | July 1958 | Semiannually | 87 | | SACRAMENTO RIVER AT PITTSBURG (PITTSBURG) | B9D80231530
(B91070.10) | 38 02 18 | 121 52 58 | 1945 | Four-day | 87 | Note: Items in parentheses are names or numbers used in previous publications. ## SAMPLING STATION DATA AND INDEX | | Stotlon | Loca | otion | Beginning | Frequency | Anolyses | |--|----------------------------|----------|-----------|------------|---------------------|--------------------| | Stotion | Number | Lotitude | Longitude | Of Record | Of Sampling | On Page | | SACRAMENTO RIVER BELOW PITTSBURG | E0B80281536 | 38 02 47 | 121 53 35 | Sept. 1968 | | 75 | | SACRAMENTO RIVER NEAR SIMMONS POINT | E0B80301559 | 38 03 01 | 121 55 57 | Sept. 1968 | | 76 | | SALINAS RIVER AT PASO ROBLES | D3 1450.00 | 35 37 40 | 120 41 05 | April 1951 | Annually | 73 | | SALINAS RIVER NEAR BRADLEY | D2 1850.00 | 35 55 40 | 120 52 00 | July 1958 | Semiannually | 73, 85 | | SALINAS RIVER NEAR CHULAR | D2 1310.10 | 36 33 15 | 121 32 55 | Sept. 1968 | Annually | 73, 85 | | SALINAS RIVER NEAR SPRECKLES | D2 1220.00 | 36 37 50 | 121 40 40 | April 1951 | Bimonthly | 72, 85, 91 | | SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION | D1 2450.00 | 36 36 34 | 121 12 07 | July 1958 | Semiannually | 72, 85 | | SAN FRANCISCO BAY AT COYOTE POINT | EOB73552194
(EOEH75.27) | 37 35 27 | 122 19 26 | Dec. 1966 | Oct., Feb.,
June | 96 | | SAN FRANCISCO BAY AT FORT POINT | E0B74842282
(E0GJ47.72) | 37 48 25 | 122 28 10 | Oct. 1964 | Bimonthly | 74, 85, 91, 96, 97 | | SAN FRANCISCO BAY AT SAN MATEO BRIDGE | E0B73622116
(E0EG85.33) | 37 36 14 | 122 11 34 | Oct. 1964 | Bimonthly | 73, 85, 91, 96, 97 | | SAN FRANCISCO BAY AT TREASURE ISLAND | E0B74922224
(E0GH59.55) | 37 49 15 | 122 22 26 | July 1965 | Bimonthly | 74, 85, 92, 96, 97 | | SAN LORENZO RIVER AT BIG TREES | DO 1200.00 | 37 01 40 | 122 03 30 | Dec. 1951 | Bimonthly | 72, 86 | | AN PABLO BAY AT POINT SAN PABLO | E0B75772256
(EOHJ74.01) | 37 57 40 | 122 25 35 | Jan. 1964 | Bimonthly | 74, 86, 92, 96, 97 | | SOQUEL CREEK AT SOQUEL | DO 3100.00 | 36 59 29 | 121 57 17 | Dec. 1951 | Annually | 72, 86, 91 | | SUISUN BAY ABOVE AVON PIER | E0B80322048 | 38 03 13 | 122 04 48 | Sept. 1968 | | 76, 92 | | SUISUN BAY AT BENICIA | E0B80242082
(E0JG30.19) | 38 02 24 | 122 08 14 | Jan. 1966 | Bimonthly | 75, 86, 96, 97 | | GUISUN BAY AT FREEMAN ISLAND | E0B80461595 | 38 04 38 | 121 59 32 | Sept. 1968 | | 78 | | SUISUN BAY AT NICHOLS (MIDDLE POINT) | E0B80301590
(E03200.00) | 38 03 01 | 121 58 58 | Jan. 1964 | Four-day | 87 | | SUISUN BAY AT PORT CHICAGO (PORT CHICAGO) | E0B80342023
(E03200.90) | 38 03 24 | 122 02 20 | 1946 | Four-day | 87 | | SUISUN BAY CUTOFF AT POINT BUCKLER | E0B80572012 | 38 05 41 | 122 01 14 | Sept. 1968 | | 78 | | SUISUN BAY NEAR BENICIA | E0B80262071 | 38 02 38 | 122 07 09 | Jan. 1968 | | 76, 92 | | SUISUN BAY NEAR MIDDLE GROUND ISLAND | E0B80351577 | 38 03 30 | 121 57 45 | Sept. 1968 | | 76 | | SUISUN BAY NEAR PRESTON POINT | E0B80402030 | 38 03 58 | 122 03 00 | Sept. 1968 | | 77, 93 | | SUISUN BAY OFF BULLS HEAD POINT AT MARTINEZ | E0B80232071 | 38 02 20 | 122 07 06 | Feb. 1968 | Random | 74, 92 | | UISUN BAY OFF MIDDLE POINT | E0B80361593 | 38 03 36 | 121 59 20 | Jan. 1968 | | 76, 93 | | UISUN SLOUGH AT MOUTH | E0B80722037 | 38 07 09 | 122 03 43 | Sept. 1968 | | 79 | | SUISUN SLOUGH AT VOLANTI SLOUGH | E0B81082028 | 38 10 48 | 122 02 48 | Sept. 1968 | | 80 | | SUISUN SLOUGH BELOW GOODYEAR SLOUGH |
E0B80802048 | 38 07 57 | 122 04 50 | Sept. 1968 | | 79 | | SUISUN SLOUGH NEAR CYGNUS | E0B80922042 | 38 09 10 | 122 04 12 | Sept. 1968 | | 80 | | SUISUN SLOUGH NEAR TEAL | E0B81022041 | 38 10 10 | 122 04 04 | Sept. 1968 | | 80 | | JVAS CREEK NEAR MORGAN HILL | Dl 1371.50 | 37 03 37 | 121 40 20 | July 1952 | Semiannually | 72, 86, 91 | MAXIMUM, MINIMUM, AND AVERAGE DAILY SPECIFIC CONDUCTANCE OCTOBER 1967 THROUGH SEPTEMBER 1968 #### MINERAL ANALYSES OF SURFACE WATER #### Abbreviations - LAB The laboratory which analyzed the sample: 5006 McClellan Air Force Base Laboratory (used by USBR). 5050 Department of Water Resources Laboratory at Bryte. - SAMPLER 5001 U. S. Bureau of Reclamation. 5050 Department of Water Resources - G.H. Instaneous gage height in feet above an established datum. - Q or DEPTH Instaneous discharge measured in cubic feet per second (cfs) or depth at which sample was collected. - DO Dissolved oxygen content in milligrams per liter. - SAT Percent saturation. - TEMP Water temperature in degrees Fahrenheit and Celsius. - PH Measure of acidity or alkalinity of water. - EC Specific electrical conductance in micromhos at 25° Celsius. - TDS Gravimetric determination of total dissolved solids at 180° Celsius. - SUM Summation of analyzed constituents in prescribed manner. - TH Total hardness represents the sum of concentrations of calcium and magnesium ions expressed as milligrams per liter of calcium carbonate. - NCH Noncarbonate hardness represents any excess of total hardness over the total alkalinity. - PERCENT REACTANCE VALUE is determined by dividing the sum of the cations or anions in milliequivalents per liter into each constituent in milliequivalents per liter arriving at a percentage. For a partial analysis, an approximate value is determined by multiplying the electrical conductance by 0.01 and using that as the cation or anion sum. #### Chemical Symbols | В | - Boron | K | - | Potassium | |------------------|---------------|-----------------|---|-----------| | CA | - Calcium | MG | - | Magnesium | | CL | - Chloride | NA | - | Sodium | | CO3 | - Carbonate | NO3 | - | Nitrate | | F | - Fluoride | SIO2 | - | Silica | | HCO ₃ | - Bicarbonate | so ₄ | - | Sulfate | TABLE D-2 MINERAL ANALYSES OF SURFACE WATER | | | | | | | | | | | | | MIL | LIGRAM | S PER | LITER | | | | | | | |------------------|-----------------|-------------|------------|----------|-------|------------------|------|------------------|--------------------|--------------------|-----------------|------------------|----------------------------|-------------------|-------------------|-----------------|----|--------|--------|-----------------------|------------| | DATE | LAB
SAMPLER | G.H. | 00
SAT | | EMP | PH
LA3
FLD | | 3 | RAL CO | NSTITUI | ENTS I | | IUDBIJ.
R TVBDS
EODH | EACTAN | CE VAL | | F | 41LLIG | RAMS P | EH LITE
TOS
SUM | R IT | | | | | 0 | 0 12 | 00.0 | 0 | | SAV L | ORENZO | RIVER | AT BI | G TREE | 5 | | | | | | | | | | 11/21/6
0735 | 57 5n50
5050 | .91
25 | 7 10.0 | 51
11 | | 8.2 | | | | .96
.25 | | 0 • 0 | 136
2,23 | | .62
.62 | | | 0.1 | | | 120 | | 01/23/6
0745 | 58 5050
5050 | 1.21 | 11.2 | 45 | | 8.2 | 399 | | | 22
,96
24 | | 0.0 | 133
2.18
54 | | .62
.62 | | | 0.0 | | | 142 | | 03/13/6
0745 | 8 5050
5050 | 3.16
390 | 10.6 | | | 7.8
7.4 | | | | 9.4
•41 | | 0.0 | 63
1.03
48 | | 11
•31
14 | | | 0.2 | | | 73 | | 05/22/6
0550 | 8 5050
5050 | | 10.4 | | | 8.1 | 384 | 40
2.00
54 | 8.8
.72 | 22 | 1.8 | 0.0 | | .92 | 20
.56 | 0.9 | | 0.0 | 23 | 223
225 | 136 | | 07/02/6
0635 | 8 5750
5050 | 1.22 | 101 | 62
17 | FC | 8.3 | 391 | | | 23
1.00
25 | | 0.0 | | | 21 | | | 0.0 | | | 138 | | 09/05/6
0630 | 8 5050
5050 | 1487 | 8.2 | 67
19 | FC | 8 · 1
7 · 3 | 282 | | | 9.8
.43 | | 0.0 | | | 5.7 | | | 0.3 | | | 129 | | | | | O | 0 31 | 00.00 |) | | SOQUEL | CREE | K AT SO | DOUEL | | 9,9 | | 3 | | | | | | | | 05/21/6
1400 | 8 5050
5050 | | 9.7
111 | 71 | F | 8.5 | | | 23 | 48 | 4.1
.10 | 5.0
.27 | 3.54 | 121
2•52
32 | 55
1.55
20 | | | 0.1 | 27 | 445
467 | 261 | | | | | O1 | 1 12 | 50.00 |) | | PAJARO | RIVE | R AT CH | ITTENO | EN | | | | | | | | | | | 11/15/6 | 7 5050
5050 | 2.01 | 8.0
79 | 57
14 | | 8.5 | 1240 | •• | | 70
3.05
24 | | 21
.70
5 | 367
6.02
48 | | 74
2.09
16 | | | 0.3 | | | 509
173 | | 01/17/6
0845 | 8 5050
5050 | 1.97 | | 54
12 | | 8.5 | 1320 | •- | | 95
4.13
31 | | 12
•40
3 | 380
5.23
47 | | 90
2.54
19 | | | 0.5 | | | 532
701 | | 03/20/68 | 8 5050
5050 | 2.58
74 | 9.8 | 55
13 | FC | 8.4 | 967 | | •- | 69
3.00
31 | | 5.0
.17 | 262
4.30 | | 65
1,83
18 | | | 0.3 | | | 354
131 | | 05/09/68
0840 | 8 5050
5050 | 1.49 | | 64 | FC | 8.6 | 1410 | 89
4.44
28 | 78
6.41
41 | 110
4.79
30 | 3.1
.08 | .97
.97 | 400
6.56
42 | 232
4.83 | 103
2.90 | 2H
•45 | | 0.5 | | 894
869 | 542 | | 07/09/68 | 8 5050
5050 | .94
4.2 | | 67
19 | | 8.7 | 1360 | | | 105
4.57
33 | | 24
•80
5 | 423
6.94
51 | | 83
2.34
17 | | | 0.4 | | | 505
118 | | 09/04/68 | 8 5050
5050 | .98
4.0 | | 73
23 | FC | 8.3 | 1810 | 73
3.64
18 | 80
6.58
32 | 234
10.18
49 | 7.2 | 0.0 | 501
8.22
39 | 360
7.49
36 | 180
5.08
24 | 5.1
.0H | | 0.1 | | 1100 | 510 | | | | | 01 | 137 | 1.50 | | | UVAS C | REEK N | EAR MO | RGAN H | ILL | | | | | | | | | | | 05/08/68
1400 | 8 5050
5050 | 2.84 | 9.9 | | | 8.1
7.6 | 338 | 31
1.55
45 | 17
1•40
41 | 10
•44
13 | 1.1 | 0.0 | 158
2.59
77 | 25
•52
15 | 8.2
.23 | 1.4 | | 0.0 | 15 | 224
186 | 146 | | 09/04/68 | 5050
5050 | | 10.8 | | | 8.3 | 389 | 35
1.75
45 | 20
1.64
42 | 10
•44
11 | 2.3 | 0.0 | 186
3.05
79 | 29
.60
15 | 8.3
.23
6 | 0.2 | | 2.0 | | 158
198 | 168 | | | | | 01 | 245 | 0.00 | | | SAN BE | NITO R | IVER N | EAR BE | AR VAL | LEY FI | RE STA | TION | | | | | | | | 05/07/68
1545 | 5050
5050 | 4.84 | 8.9 | | | 8.8 | 1170 | | 122
10.03
71 | 69
3.00
21 | 3.4
.09 | 42
1.40
10 | 543
8.91
64 | 118
2.45
19 | 43
1.21
9 | 0 • 4 | | 0.8 | 4.7 | 690
689 | 554
39 | | 09/04/68
1430 | 5050
5050 | 3.76
0.1 | 16.3 | 83
83 | FC | 8.3 | 1730 | 1.00 | 7.64
40 | 238
10.35
54 | 5.5
.14
1 | 0.0 | 540
8.86
46 | 320
6.65
34 | 138
3.89
20 | 0.3 | | 0.1 | | 1030 | 434 | | | | | os | 122 | 0.00 | | | SALINA | S RIVE | R NEAR | SPRECI | KLES | | | | | | | | | | | 11/15/67
0645 | 5050
5050 | 6.27 | | 58
14 | | 8.2 | 521 | •• | •• | 30
1.31
25 | •• | 0.0 | 173
2.84
54 | | .73
14 | | | 0.0 | | | 189 | | 01/17/68 | 5050
5050 | 3.0 | 7.1
63 | | | 8.3 | 1490 | •• | | 114
4.96
33 | | 0.0 | 600
9.84
66 | | 134
3.78
25 | | •• | 0.3 | | •• | 464 | | 03/20/68 | 5050
5050 | 5.57
41 | 10.1 | | | 8.1 | 517 | | ~ ~ | 26
1.13
21 | •• | 0.0 | 171
2.80
54 | | .62
11 | | | 0 • 0 | •• | | 191
51 | | 05/09/68
0700 | 5050
5050 | 4.70 | 31 | | | 8.1 | 1300 | 2.99 | 39
3.21
26 | 133
5.79
46 | .59
.59 | 0.0 | 345
5.66
45 | 86
1.79
14 | 144
4.06
32 | 74
1.19
9 | | 0.3 | 35 | 760
763 | 311 | MINERAL ANALYSES OF SURFACE WATER | DATE
TIME | LAH
SAMPLER | G.H. | no
SAT | | EMP | PH
LAR
FLO | EC
LAB
FLU | | | | | MILL
PERC | LIEQUIN | S PER L
VALENTS
EACTANC
SO4 | PER L | E | | | SIO2 | R LITE
TOS
SUM | TH | |------------------|----------------|-------------|---|----------|--------|------------------|------------------|------------------|------------------|-------------------|---------|--------------|-------------------|--------------------------------------|---------------------|------------------|-----|-------|-----------|----------------------|------------| | | | | na | 5 15 | 20.00 |) | | SALINA | S RIVE | ER NEAR | SPREC | KLES | | | | CONTIN | UED | | | | | | 07/07/68
0650 | 5150
5150 | _ | 4.3 | | | 7.7
7.6 | 1230 | | | 138
5.00
48 | | 0.0 | 241
3.95
32 | | 116
3.27
26 | •• | • • | 0.6 | •• | | 273
76 | | 09/04/68
1110 | 5050
5050 | | 102 | | | 7.6 | 1230 | | | 143
6.22
52 | 2.3 | 0.0 | 224
3.67
30 | 179
3.72
31 | 119
3.36
28 | 83
1.34
11 | | 0 • 1 | •• | 742
720 | 287
104 | | | | | υZ | 2 13 | 10.10 | , | | SALINA | S RIVE | ER NEAR | CHULA | R | | | | | | | | | | | 09/04/68
1030 | | | 10.4 | | | 8.1 | 409 | 37
1.85
47 | 17
1.40
35 | 15
.65
16 | 2.6 | 0.0 | 164
2.69
66 | 1.00
25 | 13
.37
9 | 0.7 | | 0.1 | •• | 195
214 | 162 | | | | | υż | 2 18 | 50.30 | | | SALINA | 5 RIVE | R NEAR | RRAUL | £Υ | | | | | | | | | | | 05/07/68
1300 | 5150
5050 | 4.82 | 7.3
102 | 63 | F | 8.4
8.2 | 352 | 34 | 16
1.32
36 | 13
•57
16 | 1.7 | 2.0 | 141
2•31
66 | 42
•87
25 | 8.6 | 0.2 | •• | 0.1 | 13 | 185 | 150
31 | | 09/04/6H
08/0 | 5150
5050 | 510 | 9.7
94 | 63 | F
C | 8.0 | 367 | 34
1.70
48 | 1.32
37 | 11
.48
13 | 2.3 | 0.0 | 157
2.57
71 | 38
.79
22 | 8.7 | 0.6 | •• | 0.6 | •• | 177
188 | 149 | | | | | 0.3 | 2 14 | 50.00 | | | 54LINA | S DIVE | D AT D | 450 PO | HIFE | | | | | | | | | | | 05/07/6B
1100 | 5450
5450 | 0.0 | | , , , | | | | | | | | | | | | | | | | | | | 1100 | ,,,, | | | ٠ | 0.3 | 3 35 | 20.00 | | | NACIMIE | ENTO R | IVER N | EAR SA | N MIGU | EL | | | | | | | | | | 05/07/68
1210 | 5050
5050 | | 11.4 | | | 8.3 | 308 | 30
1.50
47 | 15
1.23
38 | 9.8
.43
13 | 1.4 | 0.0 | 135
2.21
70 | 36
.75
24 | 7.4
.21
7 | 0 • 0 | | 0 • 0 | 11 |
168
177 | 137 | | 0725 | 5050
5050 | 5.20
416 | 8 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 | 6n
16 | | 8.0 | 347 | 32
1.60
48 | 1.32 | 8.3
.36
11 | 2.3 | 0 • 0 | 150
2.46
72 | 34
•71
21 | 7.8 | 0.5 | •• | 0.8 | •• | 154
175 | 146 | | | | | () 4 | 120 | 00.00 | | | CARMEL | RIVER | AT RO | BLES OF | EL RIO | | | | | | | | | | | 05/08/68
1100 | 5150
5150 | | 10.6 | | F
C | 8.4
7.5 | 732 | 69
3.44
48 | 24
1.97
28 | 38
1.65
23 | 3.5 | 2.0 | 142
2.33
32 | 167
3•47
48 | 47
1.33
18 | 0.0 | •• | 0.1 | 18 | 432
438 | 270
150 | ΕO | 8 7 | 36.2 | 211.6 | | SAN FRA | NCISC | O BAY A | T SAN | MATEO | BRIDG | F | | | | | | | | | 0740 | 5050
5050 | | 6.5 | 66 | F | | 3700 | •• | •• | | | •• | •• | 1 | 5500
7.10
100 | •• | | | 2 | 8900 | •• | | 0745 | 5050
5050 | | 8.3
78 | | | 8.2 | 3800 | | •• | •• | | | | | 4500
8.90
93 | •• | •• | | 2 | 8500 | •• | | 0745 | 5050
5050 | | 8.4 | 54 | FC | 8.0 | 3400 | •• | •• | | | •• | | 36 | 3100
9.42 | •• | •• | | 2 | 5800 | •• | | 0850 | 5150
5050 | | 6.2 | 58
14 | | 8,4 | 34400 | •• | •• | •• | •• | | •• | 1
34 | 2300
6.86
100 | •• | •• | | 2 | 1200 | •• | | 06/12/68 | 5050
5050 | | 5.5
68 | 63
17 | | B.2 | 5900 | •• | •• | •• | | •• | | 1 | 6200
6.84
99 | •• | •• | | 3 | 2300 | | | 8/09/68
0710 | 5050
5050 | | 7.6
81 | 65
18 | | 8.5 | 0300 | •• | •• | | •• | •• | •• | | 8400
8.88 | •• | •• | •• | 3 | 200 | 10 10 | DATE | LAR
SAMPLER | G.H.
DEPTH | DO
SAT | ī | EMP | PH
LAH
FLO | | | RAL CO™ | NST1 TUE | NTS IN | MILL | JEQUIV. | PER LITER
ALENTS PER I
ACTANCE VALU
SO4 CL | | F | B ILLIG | S102 | | NCH
TH | |--------------------------|----------------|---------------|--------------|----------|-------|------------------|----------------|----------------|------------------|-------------------|-----------------|--------|------------------|---|----|------------|---------|------|------|-----------| | | | | ć.(| i ii | 748.4 | 223 | . 2 | SAN F | RANC 15 | CO HAY | AT FORT | r POIN | iT. | | | | | | | | | 10/05/6 | 7 5150
5350 | | 4. U | | | 8.4 | 47100 | •• | | | | | | 17100
482,22
102 | | | | 3 | 2400 | •• | | 12/04/5 | 7 5450
5450 | | 3.1
75 | | | 8.3 | 47500 | | •• | | | | | 17000
479.40
100 | | | | 31 | 800 | | | 07/15/68
0845 | 5050
5050 | | 7 . '1
64 | | | ٩.2 | 42300 | | | | | | •- | 15200
428.64
101 | | | | 29 | 800 | •• | | 04/16/68
0940 | 5050
5050 | | 8 • 1
77 | | | 8.2 | 44900 | | | | | | | 16300
459.66
102 | •• | | | 31 | 200 | 77 | | 0820 | 8 5050
5050 | | 7 € 73 | | | a.s | 48200 | | | | | | | 17800
501.96
104 | | | | 34 | 000 | •• | | 08/09/66
07 50 | 5050
5050 | | 6.7
69 | 62
17 | FC | 8.3 | 50700 | | | | | | | 18300
516.06
101 | •• | | | 35 | 000 | •• | | | | | Εo | H 7 | 749.2 | 222 | . 4 | SAN FR | ANCISO | YAN O | AT TREA | SURF | ISLAND | | | | | | | | | 10/05/67 | | | 6.7 | 65 | F | | 46100 | | | | | | | 16600 | | | | 32 | 300 | | | 0615 | 5150 | | 71 | 17 | С | 8.4 | | | | | | | | 468.12 | | | | | | | | 12/05/67
0905 | 7 5050
5050 | | 7.9 | 54
12 | | 8.r | 44900 | | | | | •- | | 15900
448.38
99 | | | | 29 | 100 | •• | | 07/15/68
0710 | 5 150
5 150 | | 8 • u
72 | | | 7.4 | 39400 | | •• | •• | | | | 14600
411.72
104 | | | | 27 | 300 | •• | | 04/15/68
0810 | 5050
5050 | | 6.1
60 | | | 8.2 | 41700 | | •• | | | | •• | 14600
411.72
98 | ** | | •• | 28 | 300 | •• | | 05/11/68
0704 | 5050
5050 | | 9.2
83 | | | 7.5 | 47300 | | | | ~~ | | •• | 16600
468.12
98 | | | ~* | 30 | 300 | | | 04/09/69
0650 | 5050
5050 | | 67 | | | 8.1 | 49900 | •• | | | | | | 17800
501.96
100 | | | | 35 | 200 | | | | | | ٤٥ | ម 7 | 57.7 | 225. | 6 | SAN PAR | HIO BA | Y AT PO | DINT SA | N PAGL | _0 | | | | | | | | | 10/04/67 | | | 5.7 | 64 | F | | 31700 | | | | | | | 10900 | | | | 55 | 300 | | | 0805 | 5050 | | 62 | | | b.3 | | | | | | | | 307·38
96 | | | | | | | | 12/05/67 | 5050 | | 7.7 | 13 | С | 8.2 | 36700 | •• | | | | | | 12500
352.50
96 | | | | 23 | | •• | | 02/16/68
0945 | 5050 | | R.1
76 | 15 | С | 8.1 | 30000 | | | | | | | 10900
307.38
102 | | *** | •• | 21 | 100 | | | 1040 | 5050 | | 5.5
56 | | | 8.2 | 33000 | | •• | •• | | | | 12000
338.40
102 | •- | | | 23 | 00 | i | | 06/12/68 | 5150
5050 | | 4.4 | | | 7.6 | 41200 | | •• | | | | | 14100
397.62
96 | | •• | | 281 | 00 | N | | 0855 | 5050 | | 7.4
78 | 18 | | 8.3 | 45500 | •• | | | | | •• | 16300
459.66
101 | | •• | •• | 303 | 300 | •• | | | | | ΕO | H 8 | 02.3 | 207. | 1 : | SUISUN | RAY OF | F BULL | S HEAD | POINT | AT MAR | RTINEZ | | | | | | | | 02/27/68
1245 | 5001 | 3 | 8.6 | | | 7.2 | 4000 | | | | | •• | •• | | | •• | | •• | | •• | | 02/27/68 | 5001 | 16 | | 57
14 | | | 4600 | •• | | | •• | | •• | | •• | •• | •• | •• | | •• | | 03/29/68 | 5006
5001 | 3 | 1.0 | | | | 1000
1500 | 14
•70
7 | 29
2•41
24 | 150
6.53
66 | 8.2
•21
2 | | 90
1.48
16 | 45 246
•94 6•94
10 74 | •• | •• | •• | | 74 | 155
81 | | 04/23/68
1205 | 5001 | 3 | 5.6
56 | | | 7.7 ; | 22000 | | | •• | | •• | | •• | •• | •• | | •• | •• | | | 05/20/68
1230 | 5006
5001 | 3 | 7.8 | | | | 27500
17000 | •• | •• | •• | | | •• | 9270
261.41
95 | •• | | | 180 | 30 | •• | | DATE
TIME | LA8
SAMPLER | | 00
SAT | | MP | PH
LAB
FLD | | | RAL CO | DNST1TL
NA | | MILL
PERC | IFOJI
ENT R | S PER L
VALENTS
EACTANC
S SO4 | E VAL | JF | | H | | 105 | TH | |------------------|--------------------------------------|-------|-----------|--------------|--------|------------------|--------------|-----------------|--------|-------------------------|-----------------|--------------|-----------------|--|---------------------|--------|-----|-----|----|----------------|------------| | 7 | | | E | 0 8 8 | 02.3 | 207 | • 1 | SUISU | N PAY | OFF BL | ILLS HE | AU POIN | IT AT | MARTINE | 2 | CONTIN | JEJ | | | | | | 04/16/68
1510 | 5001 | | 7.4
81 | | | 7.8 | 27000 | | •• | | | | | | | | | | •• | | •• | | 09/05/68
1325 | 5001 | 3 | - | 68.
20. | | 7.9 | 17000 | | •- | | | •• | | | | | | | | •• | ~ • | | 09/27/68
0900 | 5006
5001 | 3 | 8.2
90 | 67.
19. | | | 18252 | | 59.06 | 8 49n0
8213.15
77 | 4.61 | | | 1000
20.802
9 | | | | 0.5 | | 15938
15350 | | | | | | E |) н в | 02.4 | 208 | . 2 | SUISU | N RAY | AT HEN | ICA | | | | | | | | | | | | 10/05/67
0955 | 5050
5050 | 9.65 | 7.6 | 66 | | 8.0 | 6010 | | - | | | | | | 1760
49.63
H2 | | | | | 3460 | •• | | 12/05/67
1200 | 5050
5050 | 11.72 | 9.0 | 54 | | 7.6 | 13800 | | •- | | | | | 1 | 43H0
23.52 | | | | •• | 4000 | • • | | 02/15/68 | 5n50
5n50 | 10.50 | 9.6 | 50
10 | | 7.2 | 4330 | | | | | | | | 1180
33.28 | | | | | 2350 | | | 04/15/68 | 5050
5050 | 8.97 | 8.5 | 6n
16 | | 7.9 | 9220 | | •• | | | | | | 76
2740
77.27 | | | | | 5420 | | | 06/11/68
0955 | 5050
5050 | | - | 61 | F
C | 8.0 | 18200 | | | | •• | | -~ | | 5920
66.94 | | | | | 10200 | | | 08/08/68
0930 | 5050
5050 | 8.41 | 7.4
78 | 64 | FC | 8,4 | 23800 | | | | | | | | 7980
25.04 | -1- | | | | 15800 | | | | | | | | | | | | | | | | | | 94 | | | | | | | | | | | ΕO | 8 8 | 8.S0 | 153. | 6 | SACRA | MENTO | RIVER | BELOW P | ITTSBU | २ ७ | | | | | | | | | | 09/24/68 | 5050
5050 | | | | | | 3440 | | | | | | | | 1020
28.76
83 | | | | | 1780 | | | | | | ΕO | 8 8 | 02.8 | 155. | 0 | SACRA | ENTO | RIVER | AT CHIP | PS TSL | ANO | | | | | | | | | | 01/26/68
1108 | 5006
5001 | | 10.1 | | F
C | 7.3 | 2200 | | | | | | | | | | | 0.5 | | | | | 01/26/68
1109 | 5001 | 16 | 10.0 | | FC | 7.3 | 4000 | | | | | | | | | | | | | | ~ • | | 01/26/68 | 5001 | 40 | 9.9 | 48 | F
C | 7.2 | 4500 | | | | | ~ • | | | | •• | | | | | | | 02/27/68
1340 | 5001 | 3 | 7.6
75 | 58
14 | | 7.0 | 200 | | | | | | | | | | | | | | | | 02/27/68 | 5001 | 16 | | 57
14 | FC | | 2000 | | •• | | | | | | | | | | | | | | 05/20/68
1240 | 5006
5001 | 3 | 9.1 | | | | 6200
8500 | | | | | | | | 2160 | | | | 12 | 3734 | | | 06/18/68 | 5006
5001 | 3 | 8.6 | 68.9 | | | 9090 | 70
3,49
4 | | 1590
69.17
77 | .42 | 0.0 | 94
1.54
2 | 435
9.05 7 | 2755 | | | | | 5371
5114 | 999 | | 07/18/68 | 5006
5001 | 3 | 8.8 | 73
23 | | | 10460 | | 44 | | | •• | ~ - | | •• | | | | •• | •• | | | 08/02/68
0845 | 5 ₀₀₆
5 ₀₀₁ | | | 68 | | | 9505
9000 | 73
3,64
4 | | 1500
65.25
75 | 51 | 0.0 | H9
1.46 | 30
.62 8 | | | | | | 5570
4991 | 1020 | | 08/15/68
1100 | 5001 | 3 | 9.3 | 68.0 | | 8.2 | 3500 | | 17 | •• | •• | •• | | | | | | •• | | | •• | | 09/27/68
1025 | 5006
5001 | 3 | 9.3 | 67.1
19.5 | | | 8436
7300 | 5.0 | 17.48 | 1300
56.55
75 | 49
1.25
2 | | 108 | 200
4.16 6 | | | | .69 | | 4499
4220 | 884
796 | | DATE
TIME | LAB
SAMPLER | G.H.
DEPTH | DO
SAT | | ЕМР | PH
LAB
FLO | | | AL CONS | | ENTS IN | MILL | ENT RE | ALENTS | PER LI | | м
F | | AMS P | EH LITE
TOS
SUM | H
TH
NCH | |------------------|----------------|---------------|-----------|----------|--------|------------------|----------------|-----------------|------------------|-----------------|-----------------|-------|------------------|-----------------|----------------------|----|--------|-----|-------|-----------------------|----------------| | | | | Ε | 0 8 | 802. | 8 207 | • 1 | SUISUN | BAY NE | EAR BE | ENICIA | | | | | | | | | | | |
01/26/6
1015 | | 6.50 | 9.2 | 5n
10 | FC | 7.4 | 24000 | | •• | | | | | | | | | 1.8 | | | | | 01/26/6
1016 | 5001 | 16 | 9.5 | 5n
10 | | 7.6 | 24000 | | ~- | | | | | | •• | | | | | | | | 01/26/6 | 5001 | 32 | 9.9 | 48 | F
C | 7.2 | 4500 | | •• | ~= | | | •• | | | •• | | | | | | | 02/27/6 | 5001 | 3 | 9.0
87 | | | 7.2 | 2000 | •• | •• | | | •- | | •• | | | | | | | | | 02/27/6 | 5001 | 16 | | 57
14 | F
C | | 4000 | | •• | | •• | | | | | | •• | | | | | | | | | E | 8 0 | 803.0 | 155 | . 9 | SACRAMI | ENTO RI | VER N | EAR SIM | 4M0NS | POINT | | | | | | | | | | 09/24/68
1342 | 5050
5050 | | | | | •• | 4250 | •• | | | | | | | 1220
 4.40
 80 | | | | | 2170 | | | | | | E |) B | 803.2 | 2 204 | . 8 | SUISUN | BAY AB | OVE A | VON PIE | R | | | | | | | | | | | 09/27/68 | 5006
5001 | 3 | 8.6 | | | | 16100
15800 | •• | •• | | | | | 19 | 6850
3.17
119 | | | •90 | | 13200 | 7 | | | | | Ε |) B (| 803.5 | 157 | .7 | SUISUN | BAY NE | AR MI | DOLE GH | OUND | ISLAND | | | | | | | | | | 09/24/68
1349 | 5050
5050 | | | | •• | •• | 6700 | •• | •- | | | | ~~ | | 1990
6.12
83 | | | | •• | 3620 | | | | | | ε |) B (| 803.6 | 159 | 3 | SUISUN | RAY OF | F MIO | DLE POI | NT | | | | | | | | | | | 01/26/68 | 5001 | | 9.6
84 | | | 7.4 | 8500 | | | | | | •• | | ~ | | | 1.0 | | | •• | | 01/26/68 | 5001 | | 10.0 | | | 7.3 | 11000 | | •• | | | | •• | | •• | •- | | | | | - 1 | | 02/27/68 | 5001 | 3 | 9.5
93 | | F
C | 7 • 1 | 210 | •• | •• | | | | •• | | •• | | •• | | | | - | | 02/27/68 | 5001 | 16 | | 57
14 | | | 210 | | •• | | | | •• | | | | •• | | | | 7 | | 03/20/68 | 5001 | 3 | 9.7 | | | 7.5 | 220 | | •• | | •• | | | •• | | •• | | | | | | | 03/20/68
1555 | 5001 | | 11.7 | | | 7.4 | 210 | | •• | | | | | •• | | | | | | | | | 03/20/68
1805 | 5001 | 3 | 10.6 | | | 7.6 | 205 | | ** | | φ. | | •• | | | | | | | | | | 03/20/68
2035 | 5001 | | 10.5 | | | 7.6 | 220 | | 49-49 | | | | | | •• | •• | •• | | •• | | •• | | 03/21/68 | 5001 | | 10.9 | | | 7.7 | 230 | | •• | | | | •• | •• | •• | | •• | | | | •• | | 03/21/68 | 5001 | | 10.6 | | | 7.4 | 220 | | •• | •• | | | •• | •• | •• | | •• | •• | •• | | | | 03/21/68
0530 | 5006
5001 | | 12.3 | | | 7.4 | 2 4 0 | 16
•83
34 | 8.8
.72
30 | 19
.83
34 | 2.0
.05
2 | •• | 72
1•18
54 | 16
•37
17 | .62
.29 | •• | | 0.5 | | 134 | 78
19 | | 03/21/68
0840 | 5001 | 3 | 11.4 | | | 7.6 | 260 | •• | ** | •• | •• | •• | •• | •• | •• | •• | •• | •• | | •• | | | 03/21/68
1210 | 5001 | 3 | 10.8 | | | 7.5 | 220 | •• | •• | | •• | | a 4 | | •• | •• | •• | •• | | •• | | | 03/21/68
1510 | 5001 | 3 | 9.9 | 57
14 | FC | 7.6 | 205 | •• | | | •• | •• | w 49 | | •• | | •• | •• | | •• | | | UATE
TIME | LA
SAMP | | G.H.
EPTH | 00
SAT | | ЕМР | PH
LAB
FLO | | | | NSTITUE | ENTS IN | PERC | LEQUINENT RE | PER L
VALENTS
EACTANCE
504 | PER L | | H | ILLIGRA | | | TH | |--------------------------|------------|-----|--------------|-----------|----------|----------|------------------|----------------|-----------------|------------------|---------------------|-----------------|-------|------------------|-------------------------------------|----------------------|---------|----|---------|----|--------------|--------------| | 1 | | | | E | 8 (| 803.6 | 5 159 | . 3 | SUISU | N HAY | OFF MIL | DOLE PO | INT | | | | CONTINU | ED | | | | | | 03/21/6 | | 01 | 3 | 9.8 | 55
13 | | 7.5 | 210 | | | ₩. | | | | | | | | | | | •• | | 03/21/6 | | n 1 | 3 | 10.0 | 55 | | 7.4 | | | | | | | | | | | | | | | ** | | 03/22/6 | 10 | 01 | 3 | 9.6 | 55
13 | | 7.6 | 240 | | | | | | | | | •• | •• | | | •• | | | 03/22/6
0245 | 8
50 | 01 | 3 | 10.5 | | F | 7.5 | 230 | | •• | | | | ~- | | | •• | | ** | | •• | | | 03/22/6
0600 | 18
5n | 0 1 | 3 | 10.1 | 55
13 | FC | 7.5 | 550 | | | | | | | | | •• | •- | •• | | ** | | | 05/20/6
1140 | 8 50 | | 3 | 9.1 | | | | 9000 | | | | | | | | 3190 | •• | | •• | 12 | 5962 | •- | | 06/15/6
12 4 0 | 8 50
50 | | 3 | 9.4 | 66 | FC | | 14500
13310 | 107 | 319
26.231 | 2650
15.28
78 | 12 | 0 • 0 | 98 | 820
17.0612 | 4505 | | | •• | | 8213
8462 | 1578
1499 | | 07/14/6
1220 | 8 5n
50 | - | 3 | 9.0 | | | | 14940
13500 | | | | | | | | | | | •• | •• | | •• | | 08/15/6
1040 | 8 50 | 01 | 3 | 9.1 | 68, | oF
oC | 8.1 | 4000 | | | | | | | | | •• | | | | | •• | | 09/27/6
1000 | 8 50
50 | | 3 | 9.5 | | | | 12560 | 5.0 | | 2100
91.35
74 | 78
2•00
2 | | 109 | 420
8.7411
7 | | | | .75 | •• | 9650
7122 | 1507
1419 | | | | | | ΕO | 8 8 | 304.0 | 203 | . 0 | SUISUN | | | ESTON F | TNIO | ė | | - | | | | | | | | 09/27/6
0945 | 8 50
50 | | 3 | 9.6 | | | | 11300
11800 | | ~ ~ | | | | | 13 | 4900
18.18
122 | | | .80 | | 9297 | •• | | | | | | ΕO | 8 8 | 304.3 | 151. | . 8 | MONTEZ | UMA SL | OUGH A | T SACRA | MENTO | RIVER | | | | | | | | | | 19/24/6 | 8 5ns | | | | | | | 3650 | | | •• | | | | | 1100 | | •• | •• | | 1900 | •• | | | | | | FO | H 8 | 30A - A | 156. | . 2 | HONKED | RAY N | FAO WH | EELER P | OINT | | | | | | | | | | | 01/11/6 | 8 | | | 12.4 | 44 | F | | | | | | | | | | | | | | | •• | •• | | 1103 | 500
8 | 1 | 3 | 101 | 57 | C | 7.2 | 7000 | | | | | | | ~= | •• | •• | •• | | •• | •• | | | 1300 | 500 | 1 | 3 | 85 | 14 | С | 7.2 | 170 | | | | | | | | | | | | | | | | 03/20/68 | 500 | 1 | 3 | 10.1 | 57 | FC | 7.7 | 240 | | | | | | •• | | | | •• | •• | | •• | •• | | 03/20/68
1735 | 500 | 1 | | 11.9 | 57
14 | | 7.8 | 230 | | | | •• | | | | | •• | •• | •• | ** | •- | •• | | 03/20/68 | 500 | 1 | | 10.5 | 55
13 | F
C | 7.7 | 200 | •• | •• | | •• | | | | •• | | | •• | | •• | •• | | 03/20/68 | 500 | 1 | | 11.0 | 55
13 | FC | 7.6 | 240 | •• | •• | | | | -• | | | •• | •• | •• | | •• | •• | | 03/21/68 | 500 | 1 | | 10.4 | | | 7.6 | 240 | | •• | •• | •• | | | •• | •• | •• | •• | •• | | •• | •• | | 03/21/68 | 500 | 1 | | 11.5 | 55
13 | FC | 7.7 | 220 | •• | •• | | •• | | | •• | | | •• | | •• | •• | •• | | 03/21/68
0805 | 500 | | | 11.8 | 56
13 | FC | 7.6
7.5 | 234
240 | 14
•72
33 | 6.9
.57
26 | 20
.87
39 | 2.0 | •• | 75
1.23
56 | 16
•33
15 | 21 .62 28 | •• | •• | 0.5 | •• | 135 | 64 | | 03/21/68
1035 | 500 | 1 | | 10.8 | 55
13 | FC | 7.6 | 220 | •• | •• | •• | •• | •• | | •• | •• | •• | •• | •• | •• | •• | •• | | 03/21/68
1405 | 500 | 1 | 3 | 9.8 | 58
14 | FC | 7.3 | 260 | | •• | | •• | •• | | •• | •• | •• | •• | •• | •• | •• | •• | | OATE
TIME | LAB
SAMPLER | G.H.
OEPTH | 00
SAT | TE | HP L | PH EC
LAB LAB | | RAL CO | NSTITUE | ENTS IN | N MILL | | ACTANO | E VAL | JE | MI
F | | MS PE | R LITE
TOS
SUM | R
TH
NCH | |------------------|----------------|---------------|-----------|----------|----------|-------------------|--------|---------|---------------------|-----------------|---------|--------|-------------------|---------------------|--------|---------|-----|-------|----------------------|----------------| | | | | E | 0 8 8 | 04.4 1 | 56.2 | HONKE | R BAY | NEAR WE | HEELER | POINT | | | | CONTIN | JEJ | | | | | | 03/21/68
1655 | 5001 | 3 | 10.7 | 57
14 | | .6 200 | | | | | | | | | | | | | | | | 03/21/68 | 5001 | 3 | 10.2 | | F
C 7 | .5 180 | | | | | | | | | | | | | | •• | | 03/21/68
2300 | 5001 | 3 | 10.0 | 55
13 | | .4 250 | | | | | | | | | | •• | | | | | | 03/22/68 | 5001 | 3 | 11.2 | | | .4 210 | | | -• | | | | | | | | | | | •• | | 03/22/68
0500 | 5001 | 3 | 11.3 | | | .5 230 | | | •• | | | | | | 7- | •• | | | | 7 | | 03/22/68
0755 | 5001 | 3 | 11.6 | 55
13 | | .5 230 | | | •• | | •• | | | | | | | | | | | 05/20/68
1200 | 5001 | 3 | 9.1
97 | 64
18 | | .0 8500 | | •• | | | | | | | | | 7 | | | | | 06/18/68
1215 | 5006
5001 | 3 | | 68
20 | | 9950
•1 8790 | | | 1680
73.08
75 | 96
2.46
3 | 0.0 | 94 | 455
9.46
10 | 2960
83•47
88 | | | | | 6278
5527 | 1070 | | 07/18/68
1155 | 5006
5001 | 3 | | 73
23 | | 11000
.9 10000 | •• | •• | | | •• | | | | | | | | | | | 08/15/68
1020 | 5001 | 3 | | 68.0 | | .2 2800 | •• | •• | | | | | | | | | | | | | | 09/26/68
0852 | 5006
5001 | 3 | | 66.2 | | 7742
.2 6800 | | 20.47 | 1500
65.25
75 | 54
1.38
2 | 0.0 | 107 | 280
5.82
7 | 2700
76.14
91 | | | .58 | | 5527
4841 | 1037 | 09/24/68 | 5050 | | ΕO | B 80 | 4.6 1 | 59•5
8680 | SUISUN | I PAY | AT FREE | MAN IS | LAND | | | 2830 | ` | | | | 4650 | | | 07/24/00 | 5050
5050 | | | | _ | 0000 | - | • | | | | | | 79.81 | | - | | | 4030 | - | | | | | E 0 | 0 00 | 5.3 1 | F2 0 | MONTET | IIMA EI | OUGH N | D MONT | EZUMA S | STATIO | A.I | | | | | | | | | 09/24/68 | 5050 | | 20 | - | • | 7130 | | | | | | | | 2510 | •• | | | | 4040 | | | | 5050 | | | | | | | | | | | | | 70.78 | | | | | | | | | | | ΕO | B 80 | 5.7 2 | 01.2 | SUISUN | BAY | UTOFF | AT POI | NT BUCK | KLER | | | | | | | | | | 09/24/68 | 5050
5050 | | | • | | 12400 | •• | | | •• | •• | | | 4440 | | | | | 7460 | | | | | | | | | | | | | | | | | 100 | | | | | | | | | | | E0 | 8 80 | 6.3 1 | | MONTEZ | UMA SL | OUGH 8 | ELOW GI | RIZZLY | SLOUGH | 1 | | | | | | | | | 09/24/68 | 5050
5050 | | | • | • | 10100 | •• | •• | •• | | •• | | •• | 3380
95.32
94 | | •• | | | 5780 | - | | | | | €0 | 8 80 | 7.0 2 | 2.3 | GRIZZL | Y BAY | AT DOL | PHIN NE | EAR SUI | SUN SL | OUGH | | | | | | | | | 01/11/68 | 5001 | 3 | 10.9 | 41 5 | F . | 9000 | •• | •• | •• | | | | •• | | | •• | •• | - | | | | 01/11/68 | 5001 | 5.70 | 10.9 | 7 | | 4 11500 | •• | •• | •• | •• | | | | | | •• | | | | | | 02/26/68 | 5001 | 3 | 8.9 | | F 7 | 2 200 | •• | •• | •• | •• | •• | •• | | •• | •• | •• | | •• | | | | 03/20/68
1315 | 5001 | 3 | 10.0 | 58 i | F . | 7 280 | •• | | | •• | •• | | | •• | •• | •• | | | | •• | | 03/20/68
1645 | 5001 | 3 | 11.4 | 55 i | F . | 7 220 | •• | •• |
•• | •• | | | | | •• | •• | •• | •• | | •• | | 03/20/68 | 5006
5001 | 3 | 11.9 | 56 1 | | 7 220 | •• | | •• | | | | | | •• | | 0.5 | | •• | •• | | | | | | | | РН | EC | MINE | RAL CO | NSTITE | JENTS I | | | S PER L | | LITER | | HILLIGR | IAMS PE | R LITE | R | |------------------|----------------|---------------|-----------|----------|--------|------|-------|--------|--------------------|--------|---------|--------|--------------------|----------------|--------------------|-----------|-----|---------|---------|--------------|----------| | DATE | LAH
SAMPLER | G.H.
DEPTH | UO
SAT | | EMP | -FLO | | | MG | NA | < | | | EACTANO
504 | E VAL | UE
NO3 | F | | | TDS | | | | | | €.(| 0 6 6 | 807.0 | 202 | • 3 | GRIZZ | LY BAY | AT O | LPHIN | NEAR 5 | UISUM | SLOUGH | | CONTIN | UED | | | | | | 03/20/68 | 5001 | 3 | 10.0 | 55 | F | 7.6 | | | | | | | | | | | | •• | | •• | •• | | 03/21/66 | 3 5106 | | 11.2 | 54 | F | | | | •• | | | | | | | •• | •• | 0.5 | | | | | 0115 | 5001 | 3 | 105 | 12 | C | 7.6 | 550 | | | | | | | | | | | | | | | | 03/21/68
0335 | 5001 | 3 | 10.4 | 55
13 | F
C | 7.5 | | | •• | | | | •• | | | | •• | •• | | •• | | | 07/21/68 | 5006
5001 | | 10.4 | | | 7.5 | | | 14
1 • 18
40 | 1.17 | .07 | | 73
1 • 20
45 | .44 | 35
1.01
38 | •• | •• | 0.5 | | 203 | 86
86 | | 03/21/68
0935 | 5001 | 3 | 10.5 | | | 7.7 | | | | | | | •• | | | | •• | •• | •- | | | | 03/21/68
1300 | | 3 | 10.6 | | | 7.6 | 220 | | | | | •• | •• | | | ** | | ~ ~ | | ~- | | | 03/21/68
1555 | 5001 | 3 | 9.7 | | | 7.4 | 325 | | | | | | | | •• | | •• | | | | •• | | 03/21/68
1925 | 5001 | 3 | 10.0 | | | 7.5 | 220 | 03/21/68
2210 | 5001 | 3 | 96 | | | 7.4 | | | | | | | | | | | •• | | •• | | - | | 0150
03/55/68 | 5001 | 3 | 10.6 | | | 7.6 | 360 | | | | | | | | | •• | | | •• | | | | 03/22/68
0330 | 5001 | 3 | 10.4 | | | 7,6 | 260 | •• | | | | | | | | | | •• | •• | •• | •• | | 03/22/68
0645 | 5001 | 3 | 17.0 | | FC | 7.4 | 280 | | | •• | | •• | | | •• | | •• | | •• | | | | 05/20/68
1055 | 5101 | 3 | 9.2 | | | 8.1 | 12000 | | •• | | | | | | | •• | | | | | | | 06/18/68 | 5006 | | 8.7 | | | | 14500 | 108 | | 2500 | | 0.0 | 98 | 790 | 4350 | •• | | | | 9143 | 1588 | | 1130 | 5001 | 3 | 95 | 19. | 5C | 8,3 | 13310 | 5.41 | 26.40 | | 2.46 | | 1.61 | 16.431 | 22.67
87 | | | | | 8214 | 1509 | | 07/18/68
1120 | 5006
5001 | 3 | 121 | | | | 16600 | | | | | | | | | •• | •• | •• | | •• | •• | | 08/15/68
0945 | 5001 | 3 | 9.6 | | | 8.2 | 3000 | •• | •• | | •• | •• | •• | | •• | •• | •• | | | | •• | | 09/26/68 | 5006
5001 | 3 | 9.4 | | | | 11082 | | | | 1.82 | | 106
1.74 | 420
8.7410 | 8.57 | | | .66 | •• | 7737
6730 | | | | | | FO | 8 8 | 07.2 | 203. | 7 | SUISUN | ei Oila | EM AT | ADUTH | | | | | | | | | | | | 09/24/68 | 5050 | | | | | | 12600 | | | | | | | •• | 4690 | ** | | | •• | 7410 | •• | | | 5050 | | | | | | | | | | | | | 13 | 104 | | | | | | | | | | | EO | 8 8 | 07.5 | | | MONTEZ | UMA SL | OUGH ! | NR HOLE | NA | | | | | | | | | | | 09/24/68 | 5050
5050 | | | | | •• | 13000 | | •• | | 44 | •• | | | 4340 | •• | •• | | •• | 7610 | • • | | | | | EO | 8 84 | 0.8.0 | 204 | 9 | SHIELD | \$1.0.10 | H SEL | W GOOD | VFAD E | Louisa | | | | | | | | | | 09/24/68 | 5050 | | 2.0 | | 08.0 | | | 3013UN | 3,000 | ח ספנו | | LAK 3 | | | 3000 | | | | | 6940 | •• | | V7/24/08 | 5050 | | | | | | 12000 | | | •• | - | | | | 3990
2.52
93 | | | | | 0940 | | | DATE
TIME | LAB G.H.
SAMPLER DEPTH | 00
SAT | TEHP | PH EC LAB LAS | | MG | NA NA | ITS IN | MILLI | EQUIV | PER LITER
ALENTS PER LI
ACTANCE VALUE
504 CL | | M] | LL1GR | AMS PE | R LITE | R
TH
VCH | |--------------|---------------------------------------|-----------|---------|---------------|---------|----------|---------|---------|--------|--------|---|----|----|-------|--------|--------|----------------| | | | E0 | 8 808.4 | 154.5 | MONTEZU | JMA SLO | UGH AT | MEINS | LANDI | NG | | | | | | | | | 09/24/68 | 5050
5050 | | •• | 13200 | | •• | | | | | 4670
131.69
99 | •• | •• | | | 7700 | •• | | | | Ε0 | 8 808.4 | 203.6 | MONTEZU | MA SLO | UGH NE | AR MOU | ТН | | | | | | | | | | 09/24/68 | 5050
5050 | | •• | 11900 | •• | •• | | | | •• | 3870
109-13
91 | •• | | •• | | 6910 | •• | | | | Ε0 | B 809.2 | 204.2 | SUISUN | SLOUGH | NEAR | CYGNUS | | | | | | | | | | | 09/24/68 | 5050
5050 | | •• | 11700 | •• | •• | •• | | •• | •• | 4120
116.18 | | •• | •• | •• | 6990 | •• | | 09/24/68 | 5050
5050 | | •• | 13000 | •• | | •• | •• | •• | •• | 4670
131.69 | | •- | | •• | 7680 | •• | | | | | | | | | | | | | 101 | | | | | | | | | | E0 | 8 810.0 | 202.5 | MONTEZU | MA SLO | UGH AB | OVE HU | NTER C | UT | | | | | | | | | 09/24/68 | 5050
5050 | | •• | 11900 | | •• | | •• | | •• | 3990
112.52
94 | •• | •• | •• | •• | 6890 | •• | | | | | | 704 1 | CHICIN | er ollen | NEAD | - F.M | | | | | | | | | | | 09/24/68 | 5050 | 50 | 8 810.2 | 10700 | SUISUN | SLOUGH | NEAR | ICAL | | | 3560 | | | | | 6400 | | | 07/24/00 | 5050 | | | 00 10100 | | | | | | | 100.39 | | | | | 0400 | | | | | ٤0 | 8 810.3 | 157.4 | HONTEZU | MA SLO | UGH AT | FROST | SLOUG | н | | | | | | | | | 09/23/68 | 5050
5050 | | •• | 12700 | ••• | •• | •• | •• | •• | •• | 4420
124.64
98 | •• | •• | | | 7300 | •• | | | | FO | B 810.6 | 200.6 | MONTEZU | MA SLO | UGH NF | AR TRF | E SLOU | GH | | | | | | | | | 09/24/68 | 5050 | | •• | 11700 | | | | | | | 3730 | | | | | 6640 | | | | 5050 | | | - | | | | | | | 105·19
89 | | | | | | | | | | €0 1 | 810.8 | 202.8 | SUISUN | SLOUGH | AT VO | LANTI | SLOUGH | | | | | | | | | | 09/24/68 | 5050
5050 | | •• | 10300 | •• | •• | | •• | | •• | 3470
97.85
95 | | | | •• | 5980 | •• | | | | £0 1 | 811.2 | 158.2 | MONTEZU | MA SLO | JGH NE. | AR BELI | DONS L | ANDING | | | | | | | | | 07/08/68 | 5050
5050 | | •• | 11300 | •• | •• | | | | | 3620
102.08
90 | •• | •• | | | 6550 | | | 07/25/68 | 5050
5050 | | •• | 14200 | •• | •• | •• | •• | •• | •• | 4560
128.59
90 | | •• | •• | •• | 7950 | | | 08/01/68 | 5050
5 ₀ 5 ₀ | | •• | 14700 | •• | •• | •• | •• | •• | •• | 4850
136,77 | | •• | | •• | 8770 | •• | | 08/08/68 | 5050
5050 | | | 15600 | •• | •• | •• | •- | •• | •• | 5250
148.05 | •• | •• | | •• | 9390 | | | 09/13/68 | 5050
5050 | | | 14900 | •• | •• | | •• | •• | •• | 5390
152.00
102 | | | | •• | 8180 | •• | | 09/24/68 | 5050
5050 | | •• | 11900 | •- | •• | •• | •• | | •• | 4420
124,64
104 | •• | •• | •• | | 6830 | | | 09/27/68 | 5050
5050 | | •• | 13500 | •• | •• | •• | | •• | | 4850
136.77
101 | •• | | •• | | 8130 | | | | | | | | | | | | | | | | MTI | LIGRA | 45 DED | 1 TTED | | | | | | | |---|------------------|----------------|-------------|-------------|----------------------|--------|------------------|------------|------------------|------------------|------------------|---------|-----------------|-------------------|------------------|-----------------------|--------------------|-------|--------|--------|-----------------------|----------------| | k | DATE
TIME | LAB
SAMPLER | G.H. | DO
SAT | | TEMP | PH
LAB
FLO | | | ERAL C | ONSTITU
NA | ENTS I | N MIL | LIEQUI | REACTA | TS PER | LITER
UE
NOR | | MILLIG | RAMS F | EH LITE
TUS
SUM | R
TH
NCH | | | | | | E | 3 11 | 00.5 | 0 | | NAPA | RIVER | AT OUT | TON LA | NOING | | | | | | | | | | | | 10/04/67
0755 | 5050
5050 | | | 63 | FC | | 19400 | | | • •• | •• | | | - | - 6430
181.33 | | | •• | | 12800 | •• | | | 12/05/67
1025 | 5050
5050 | | 7.7
71 | 53 | FC | 7.4 | 18800 | | | | •• | | | | 6260
176.53 | | | | | 11400 | | | ı | 02/15/68
0825 | 5050
5050 | | 8 · 1
76 | 54 | FC | 7.7 | | | • | • •• | ** | | | • • | 2280
64.30 | •• | | | | 4400 | | | Į | 04/15/68 | 5050
5050 | | | 64 | | 7.5 | | | • | • •• | •• | | | | 2520
71.06
84 | ** | | | | 4920 | | | į | 06/11/68
0825 | 5050
5050 | | | 7 ₀
21 | | 8.1 | 21800 | | | | | | | | 7220
203.60
93 | | | | | 13500 | | | | 08/08/68
0800 | 5050
5050 | | | 71 | | 7.6 | 34400 | | ï | - | | | | | 11400
321.48
93 | | | | | 22300 | | | ı | | | | Ε | 3 15 | 00.0 | 0 | | NAPA | RIVER | NEAR S | T. HELE | NA | | | | | | | | | | | i | 05/16/68
1430 | 5050
5050 | .82 | 8.5 | | F | 7.8
7.4 | 304 | 22
1.10
36 | 11 | .96 | 2.6 | 0.0 | 119 | . 33 | . 54 | 9 · 6
· 15 | | 0.5 | 38 | 195
199 | 102 | | N | | | | E | 5 11 | 50.00 | 0 | | ALAME | DA CRE | EK NEAF | RNILES | | | | | | | | | | | | | 10/17/67
0705 | 5050
5050 | 2.83 | 9.3 | | | 8.2 | 928 | | •- | 93
4.05
43 | | 0.0 | 230
3.77
40 | | 106
2.99
32 | •• | | 0.8 | | | 282
94 | | | 11/21/67 | 5050
5050 | | 10.2 | | | 8.0 | 669 | | | 72
3.13
46 | •• | 0.0 | 145
2.38
35 | | 90
2.54
37 | | | 0.4 | | | 187
68 | | | 12/14/67
0800 | 5050
5050 | | 11.5 | 41
5 | FC | 8.0 | 583 | | •• | 65
2.83
48 | | 0.0 | 106
1.74
29 | | 88
2.31
39 | •• | | 0.4 | | | 114
27 | | (| 1015 | 5050
5050 | 3.25
70 | 11.2
96 | 48 | FC | 8.2 | 824 | | •• | 3.48
42 | •• | 0.0 | 144
2,36
28 | | 110
3.10
37 | | | 0.7 | | | 186
68 | | | 1250 | 5050
5050 | 2.90 | 10.5 | 46 | FC | 8.2 | 925 | | | 68
2.96
32 | | 0.0 | 252
4.13
44 | | 90
2.54
27 | •• | | 0.7 | | | 294
88 | | (| 1005 | 5050
5050 | 3.79
203 | 10.4 | 52
11 | F
C | 7.8
7.6 | 538 | | | 37
1.61
29 | | 0.0 | 105
1.72
31 | | 58
1.64
30 | ~ ~ | | 0.4 | | | 141 | | C | 1245 | 5050
5050 | 3.37
92 | 10.0 | 60 | FC | 8.1 | 518 | •• | | 45
1.96
37 | •• | 0.0 | 117
1.92
37 | | 59
1.66
32 | | | 0.0 | | | 153
57 | | 0 | 0930 | 5050
5050 | 3.14
52 | 9.0 | 65
18 | FC | 8.0 | 444 | 1.10
26 |
16
1.32
31 | 1.78
42 | 2.3 | 0.0 | 117
1.92
47 | .67
16 | 1.38
34 | 6.7
.11
3 | •• | 0.3 | 15 | 240
239 | 120 | | 0 | 6/14/68 | 5050
5050 | 3.18 | 9.3 | 68 | FC | 8.5 | 452 | | •• | 40
1.74
38 | •• | 3.0 | 119
1.95
43 | | 47
1.33
29 | | | 0.2 | | | 180 | | 0 | 7/02/68 | 5050
5050 | 3.21 | 9.1 | 98 | FC | 8.3 | 431 | •• | | 38
1.65
38 | •• | 0.0 | 113
1.85
42 | | 1.30
30 | . •• | | 0.1 | •• | | 112 | | 0 | 9/05/68 0915 | 5050
5050 | 3.18
58 | 96 | 71 | FC | 8.1
7.6 | 1070 | •• | •• | 83
3,61
33 | | 0.0 | 431
7.07
66 | | 58
1.64
15 | •• | •• | 0.5 | •• | | 388
35 | | | | | | E5 | 140 | 0.00 | | | ARROYO | OEL V | ALLE N | EAR LIV | /ERMOR | E | | | | | | | | | | 0 | 1/18/68 | 5050
5050 | 2.35 | 11.3 | 44 | F
C | 7.8 | 660 | 57
2.84 | 41
3.37 | 1.83 | | | •• | 119 | 39
1.10 | •• | 0.2 | 0.4 | | 450 | 310
310 | | 0 | 2/01/68
1005 | 5050
5050 | 3.05 | 12.2 | 45 | FC | 8.1 | 416
380 | 34
1.70
40 | 21
1.73
41 | 18
.78
18 | •• | | •• | 52
1.08
25 | 13
•37
8 | •• | 0.3 | 0.4 | | 264 | 172
172 | | 0 | 3/06/68
0915 | 5050
5050 | | 11.1 | 55
13 | F
C | 8.1 | 608
545 | 45
2.25
37 | 32
2.63
43 | 35
1.52
25 | | | m # | 79
1.64
26 | .68
11 | | 0 • 2 | 0.5 | | 299 | 246
246 | | 0 | 4/03/68
0850 | 5050
5050 | 2.46 | 13.2 | 56
13 | FC | 8.3 | 586
505 | 2.45
41 | 31
2.55
43 | 30 | 1.4 | •• | •• | 66
1.37
23 | 19
•54
9 | •• | 0.2 | 0.5 | | 325 | 248
248 | | | 5/01/68
1355 | 5050
5050 | 2.22 | 10+1 | 70
21 | FC | 8.4 | 701 | 50
2.50
33 | 36
2.96
40 | 45
1.96
26 | 2.1 | 4.0
.13
2 | 263
4.31
58 | 93
1.93
26 | 35
.99
13 | 0.4 | •• | 0.6 | 9.0 | 396
404 | 273
51 | TABLE D-2 | DATE
TIME | LAH | G.H. | UO
SAT | | EMP | PH
LA3
FLO | LAD | | AL CO | | | MIL
PER | CENT RE | VALENTS
EACTANG | S PER L | LITER
JE
NO3 | | | | TOS | TH | |------------------------------|--------------|---------------|-----------|--------|---------|------------------|------|------------------|--------------------|------------------|--------|-----------------|-------------------|--------------------|------------------|--------------------|-----|-----|-----|------------|---------| | | | | Ε | 5 14 | 00.00 | 0 | | ARROYO | DEL V | ALLE N | EAR LI | TVER40 | RE | | | CONTIN | UED | | | | | | 06/05/6 ⁸
1015 | 5050
5050 | | 9.2 | 64 | F | | 1210 | | 54 | 103 | | •- | | 184 | 107 | •• | 0.2 | 1.9 | •• | 724 | 390 | | | | | E | 6 42 | 50.30 | , | | COYOTE | CREEK | NEAR | MCRCAP | νE | | | | | | | | | | | 05/21/68
0930 | 5050
5050 | | 10.4 | | | | 363 | 33
1.65
44 | | 17
.74
20 | 2.1 | 0.0 | 165
2.71
74 | .60
15 | .31 | 1.4 | | 0.1 | 7.3 | 193
198 | 147 | | | | | Ε | 6 52 | 50 - 20 |) | | LOS GA | TOS CR | EEK AT | LOS G | SATOS | | | | | | | | | | | 05/21/68
1145 | 5050
5050 | | 10.3 | | | | | 2.00 | 15
1.23
31 | 16
.70
18 | 1.7 | | 141
2.31
60 | 59
1.23
32 | .28 | 0.3 | | 0.0 | 12 | 224 223 | 162 | | | | | F | 8 21 | 00.50 | | | NAVARRI | n RIVE | R NEAR | NAVAR | 140 | | | | | | | | | | | 09/09/68
1210 | 5050
5050 | | 11.4 | | | | 282 | 25
1.25
43 | 12
.99
34 | .61
21 | 1.3 | | 143
2.35
85 | 8.4 | 8.8 | 0.0 | | 0.0 | •• | 147
140 | 110 | | | | | FE | 3 27 | 20.00 | | | HIS RIV | VER NE | AR MOU | TH | | | | | | | | | | | | 09/09/68
1610 | 5050
5050 | | 105 | | | | 216 | 19
.95
45 | 7.4
.61
29 | | 1.4 | 0.0 | 116
1.90
95 | 3.4 | .03 | 0.0 | | 0.1 | | 120 | 78 | | | | | FE | 3 3 18 | 30.59 | | | NOYO RI | IVER N | EAR FO | RT BRA | GG | | | | | | | | | | | 09/10/68
0800 | 5050
5050 | 10.64 | 8.2
83 | | | | 181 | 17
.85
46 | 5.5 | 12
.52
28 | 1.4 | 0.0 | 90
1.48
83 | 3.5 | 8.5
.24
13 | 0.0 | | 0.0 | •• | 112 | 65 | | | | | FG | 7 108 | 30.50 | | | RUSSIA | RIVE | R AT G | UERNEV | ILLE | | | | | | | | | | | 11/15/67
0810 | 5950
5950 | 4.33 | 8.5 | 63 | | 8.2 | 355 | | | 17
•74
22 | | 0.0 | 149
2.44
75 | | 13
•37
11 | •• | •• | 0.3 | •• | •• | 125 | | 01/23/68 | | 7.04
1890 | | | | 8.2 | 263 | •• | | 7.8
.34
12 | | 0.0 | 130
2.13
80 | •• | 5.9
.17
6 | * •• | | 0.3 | | | 115 | | 03/20/65
0825 | 5050
5050 | 12.55
5650 | 10.6 | | | 8.0
7.8 | 194 | | | 6.4 | | 0.0 | 98
1.61
82 | •• | 3.2 | | •• | 0.1 | •• | | 35 | | 05/22/68
0810 | 5050
5050 | | 105 | | | 5.8 | 369 | 30
1.50
40 | 19
1.56
41 | 15
.65
17 | 1.8 | 0.0 | 183
3.00
81 | .35 | .34 | 2.0
.03 | •• | 0.4 | 15 | 196 | 154 | | 07/09/58
0820 | 5050
5050 | | 104 | | | 8.3 | 291 | | | 10
•44
15 | •• | 0.0 | 113
1.85
63 | | 6.6 | | •• | 0.3 | •• | | 112 | | 09/04/68 | 5050
5050 | 3.81 | 8.3
94 | | | 8.0 | 576 | ~~ | | 57
2.48
43 | | 0.0 | 127
2.08
35 | •• | 85
2.40
41 | •• | | 0.2 | •• | •• | 132 | | | | | F9 | 150 | 0.00 | | | RUSSIAN | RIVER | R NEAR | HEALO! | SBURG | | | | | | | | | | | 05/16/68
1130 | ., | 1.38 | | | | | 318 | 30
1.50
43 | 18
1 • 48
43 | 10
•44
13 | | 5.0
•17
5 | | 17
•35
10 | 7.0 | 2.5 | •• | 0.5 | 15 | 166 | 150 | | | | | F9 | 176 | 5.00 | | | RUSSIAN | RIVER | NEAR | HOPLAN | V) | | | | | | | | | | | 05/14/68 | 5050
5050 | 4.38
108 | | | | | 244 | 22
1.10
43 | 11
•90
35 | 12.52 | 1.3 | | 122
2•00
80 | 11
•23
9 | 7.3
.21
8 | 3.4 | | 0.4 | 11 | 140
139 | 99 | | | | | F9 | 490 | 0.00 | | | RUSSIAN | RIVER | to E.F. | , AT F | POTTER | VALLEY | Y PONE | RHOUSE | | | | | | | | 05/14/68
0830 | 5050
5050 | 1.40 | 9.9 | | | 8.0 | 169 | 18
.90
51 | 6.8
•56
32 | 6.2
.27
15 | 0.9 | 0.0 | 90
1.48
86 | | 3.1
.09
5 | 0.0 | •• | 0.4 | 9.6 | 95
97 | 73
0 | ## MISCELLANEOUS CONSTITUENTS IN SURFACE WATER Four of the several column headings in the following table show: - Turbidity The values are shown in Hellige turbidity units. - MBAS Methylene blue active substances are a measure of detergents ABS and LAS. - As Arsenic. - PO₄ Phosphates as PO₄. # TABLE D-3 MISCELLANEOUS CONSTITUENTS IN SURFACE WATER CENTRAL COASTAL AREA | ALAMEDA CREEK NEAR NILES E31150.00 10-17-67 11-21-07 12-3-68 10-12-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3- | Station | Station
Number | Date | Turbidity | MBAS | As
In | PO4 | Other
Constituents | | |--|-------------------------------|-------------------|---|--|------|----------|------|--|--| | 11-21-67 2-5 2-1-68 3-10-69 3-10-68 3-10-69 3-10-68 3-10-69 3-10-68 3-10-69 3-10-68 3-10-69 3-10-68 3-10-69 3-10-68 3-10-69 3-10-68 3-10-69 3-10-68 3-10-69
3-10-69 | | | | Units | mg/I | mg/l | mg/l | mg/l | | | 2-01-68 | AMEDA CREEK NEAR NILES | E51150.00 | 11-21-67
12-14-67
1-23-68
2-08-68
3-13-68
4-12-68
5-22-68
6-14-68
7-02-68 | 25
20
30
2
450
55
41
40
45 | | 0.01 | 4.0 | | | | 2-01-68 | ROYO DEL VALLE NEAR LIVERMORE | E51400.00 | 1-18-68 | | | 0.00 | 0.02 | | 0.00
0.00
1.6 | | Anganese | | | 2-01-68 | | | 0.00 | 0.27 | Manganese Phenols Selenium Zinc Chromium Copper Iron Total | 0.01
0.00
0.00
0.00
0.00
0.00
0.00 | | 3-06-68 0.00 0.03 Chromium Copper Iron Total Iron Disso Lead Manganese Phenols Selentum Zinc Chromium Copper Iron Total Iron Disso Lead Manganese Phenols Selentum Zinc Chromium Copper Iron Total Iron Disso Lead Manganese Phenols Selentum Zinc Chromium Zi | | | | | | | | Manganese
Phenols
Selenium | 0.02
0.00
0.01 | | A-03-68 | | | 3-06-68 | | | 0.00 | 0.03 | Chromium Copper Iron Total Iron Dissolved Lead Manganese | 0.00
0.00
0.07
0.46
0.07
0.00 | | Solution | | | 4-03-68 | | | 0.00 | 0.02 | Selenium Zinc Chromium Copper Iron Total Iron Dissolved | 0.00
0.00
0.90
0.00
0.00
1.1
0.02 | | S-01-68 3 0.00 0.02 0.06 Chromium Copper Iron Total Iron Disso Lead Phenols Selentum Zinc | | | | | | | 4 | Manganese
Phenols
Selenium | 0.02
0.00
0.00 | | CARMEL RIVER AT ROBLES DEL RIO D41200.00 5-08-68 2 0.00 0.03 COYOTE CREEK NEAR MADRONE E64250.00 E64250.00 5-21-68 4 0.00 0.02 NACIMIENTO RIVER NEAR SAN MIGUEL D33520.00 D32620.00 D33520.00 D326200000000000000000000000000000000000 | | | | 3 | | | | Chromium Copper Iron Total Iron Dissolved Lead Phenols | 0.00
0.00
0.21
0.01
0.00
0.00 | | COYOTE CREEK NEAR MADRONE | | | | | | | | | 0.00 | | LOS GATOS CREEK AT LOS GATOS E65250.00 D33520.00 5-21-68 4 0.00 0.02 Aluminum Copper Iron Disso Lead Manganese Zinc NAPA RIVER AT DUTTONS LANDING E31100.50 10-04-67 12-05-67 2-15-68 | | | | | | | | | | | NACIMIENTO RIVER NEAR SAN MIGUEL D33520.00 5-07-68 9-04-68 4 0.00 0.02 Aluminum Copper Iron Disso Lead Manganese Zinc NAPA RIVER AT DUTTONS LANDING E31100.50 10-04-67 12-05-67 2-15-68 Suspended Sus | | | | | | | | | | | 12-05-67 Suspended Suspe | | - | 5-07-68 | | | 0.00 | | Copper
Iron Dissolved
Lead
Manganese | 0.02
0.00
0.00
0.00
0.00 | | 4-15-68 Suspended Suspen | PA RIVER AT DUTTONS LANDING | E31100.50 | 12-05-67
2-15-68
4-15-68
6-11-68 | | | | | Suspended Solids | 32
31
48
85
41
36 | | NAPA RIVER NEAR ST. HELENA E31500.00 5-16-68 10 0.01 0.32 | PA RIVER NEAR ST. HELENA | E31500.00 | 5-16-68 | 10 | | 0.01 | 0.32 | | | # MISCELLANEOUS CONSTITUENTS IN SURFACE WATER CENTRAL COASTAL AREA | Station | Station
Number | Date | Turbidity
Units | MBAS
in
mg/l | As
in
mg/l | PO4
in
mg/l | Other
Constituents
mg/i | |---|-------------------|--|-----------------------------------|--------------------|------------------|-------------------|---| | PAJARO RIVER AT CHITTENDEN | D11250.00 | 11-15-67
1-17-68
3-20-68
5-09-68
7-09-68
9-04-68 | 25
20
20
4
60 | | 0.01 | 0.26 | Aluminum 0.04 Copper 0.00 Iron Dissolved 0.00 Lesd 0.00 Manganese 0.00 Zinc 0.00 | | RUSSIAN RIVER AT GUERNEVILLE | F91080.50 | 11-15-67
1-23-68
3-20-68
5-22-68
7-09-68
9-04-68 | 25
35
100
10
15
35 | | 0.00 | 0.69 | | | RUSSIAN RIVER NEAR HEALDSBURG | F91500.00 | 5-16-68 | 2 | | 0.00 | 0.02 | | | RUSSIAN RIVER NEAR HOPLAND | F91765.00 | 5-14-68 | 8 | | 0.00 | 1.0 | | | RUSSIAN RIVER, EAST FORK, AT POTTER VALLEY POWERHOUSE | F94900.00 | 5-14-68 | 3 | | 0.00 | 0.03 | | | SALINAS RIVER NEAR BRADLEY . | D21850.00 | 5-07-68
9-04-68 | 6 | | 0.01 | 0.08 | Aluminum 0.02 Copper 0.01 Iron Dissolved 0.00 Lead 0.00 Manganese 0.00 Zinc 0.00 | | SALINAS RIVER NEAR CHULAR | D21310.10 | 9-04-68 | | | 0.00 | | Aluminum 0.02 Copper 0.00 Iron Dissolved 0.00 Lead 0.01 Manganese 0.00 Zinc 0.00 | | SALINAS RIVER NEAR SPRECKELS | D21220.00 | 11-15-67
1-17-68
3-20-68
5-09-68
7-09-68
9-04-68 | 25
5
75
10
7 | | 0.01 | 36 | Aluminum | | SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION | D12450.00 | 5-07-68
9-04-68 | 100 | | 0.02 | 0.28 | Aluminum 0.04 Copper 0.00 Iron Dissolved 0.00 Lead 0.00 Manganese 0.00 Zinc 0.00 | | SAN FRANCISCO BAY AT FORT POINT | E0B74842282 | 10-04-67
12-04-67
2-16-68
4-16-68
6-12-68
8-09-68 | | | | | Suspended Solids 19 Suspended Solids 14 Suspended Solids 13 Suspended Solids 19 Suspended Solids 35 Suspended Solids 35 Suspended Solids 15 | | SAN FRANCISCO BAY AT SAN MATEO BRIDGE | E0B73622116 | 10-05-67
12-04-67
2-16-68
4-16-68
6-12-68
8-09-68 | | | | | Suspended Solids 83 Suspended Solids 69 Suspended Solids 31 Suspended Solids 205 Suspended Solids 29 Suspended Solids 16 | | SAN FRANCISCO BAY AT TREASURE ISLAND | EOB74922224 | 10-05-67
12-05-67
2-15-68
4-15-68
6-11-68
8-08-68 | | | | | Suspended Solids 26 Suspended Solids 18 Suspended Solids 13 Suspended Solids 38 Suspended Solids 13 Suspended Solids 29 | ## TABLE D-3 MISCELLANEOUS CONSTITUENTS IN SURFACE WATER CENTRAL COASTAL AREA | Station | Stotion | Date | Turbidity | | As | P04 | Other
Constituents | | |----------------------------------|-------------|--------------------|-----------|------------|------------|------------|--------------------------------------|------------| | Sidilon | Number | Date | Units | in
mg/l | in
mg/l | in
mg/i | mg/1 | | | | | | | | | | | | | SAN LORENZO RIVER AT BIG TREES | D01200.00 | 11-21-67 | 7 7 | | | | | | | | | 3-13-68
5-22-68 | 20 2 | | 0.01 | 0.43 | | | | | | 7-02-68
9-05-68 | 4 3 | | | | | | | CAN DIDIO DAY AM DOTOM CAN DADIO | P0P7F7771F6 | 10-04-67 | | | | | Suspended Solids | /0 | | SAN PABLO BAY AT POINT SAN PABLO | E0B75772256 | 12-05-67 | | | | | Suspended Solids | 40
50 | | | | 2-16-68
4-16-68 | | | | | Suspended Solids Suspended Solids | 98
55 | | | | 6-12-68
8-09-68 | | | | | Suspended Solids Suspended Solids | 26
22 | | SOQUEL CREEK AT SOQUEL | D03100.00 | 5-21-68 | 1 | | 0.00 | 0.30 | | | | SUISUN BAY AT BENICIA | E0B80242082 | 10-05-67 | | | | | Suspended Solids
Suspended Solids | 186
69 | | | | 2-15-68 | | | | | Suspended Solids | 160 | | | | 4-15-68
6-11-68 | | | | | Suspended Solids
Suspended Solids | 620
678 | | | | 8-08-68 | | | | | Suspended Solids | 440 | | UVAS CREEK NEAR MORGAN HILL | D11371.50 | 5-08-68
9-04-68 | 25 | | 0.00 | 0.02 | Aluminum | 0.02 | | | | | | | | | Copper
Iron Dissolved | 0.00 | | | | | | | | | Lead
Manganese | 0.01 | | | | | | | - 1 | | Zinc | 0.00 | - | - | #### TABLE D-4 SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS * (Chlorides in Milligrams Per Liter) | Station | Stotlon | | | | Octobe | r 1967 | | | | |--|----------------------------|----------|---------|----------------|----------|---------|---------|----------|--------| | 31011011 | Number | 2 | 6 | 10 | 14 | 18 | 22 | 26 | 30 | | CARQUINEZ STRAIT AT CROCKETT | E0B80352133 | 8,830 | 9,640 | 8,170 | 9,800 | | 9,170 | | 9,480 | | CARQUINEZ STRAIT AT MARTINEZ | E0B80192078 | | 4,400 a | 4,720 | 4,640 | 5,130 a | 5,590 | 6,080 | | | SUISUN BAY AT PORT CHICAGO | E0B80342023 | 1,050 | | 2,150 | 1,700 | | 3,790 | 2,210 | 2,860 | | SUISUN BAY AT NICHOLS | E0B80301590 | 1,290 a | | 1,310 a | 1,680 | 3,040 | 2,810 | 1,820 | 2,360 | | SACRAMENTO RIVER AT PITTSBURG | В9080231530 | 75 ade | 83 | | 49 | 60 | 86 | | 37 | | SACRAMENTO RIVER AT COLLINSVILLE | B9D80441513 | 26 а | | 23 a | 27 | 24 | 29 ad | | 20 | | Station | Stotlon | | | | November | 1967 | | | | | | Number | 2 | 6 | 10 | 14 | 18 | 22 | 26 | 30 | | CARQUINEZ STRAIT AT CROCKETT | E0B80352133 | | 8,800 | 6,810 | | | 9,100 | 10,000 | 11,700 | | CARQUINEZ STRAIT AT MARTINEZ | E0B80192078 | 5,200 a | 7,250 | 6,060 | 4,180 a | | 5,270 | 5,990 | 8,360 | | SUISUN BAY AT PORT CHICAGO | E0B80342023 | 3,880 | 3,700 | 1,460 | | 3,580 | 3,160 | 4,690 ed | 6,750 | | SUISUN BAY AT NICHOLS | E0B80301590 | 3,600 | | | | | 1,550 | 4,010 | | | SACRAMENTO RIVER AT
PITTSBURG | B9D80231530 | 84 | 100 a | 96 abd | 87 d | 157 | 129 | 96 | 193 | | SACRAMENTO RIVER AT COLLINSVILLE | B9D80441513 | 93 | 31 a | 30 | | 220 | 40 a | 16 | | | Station | Station | | | | December | 1967 | | | | | | Number | 2 | 6 | 10 | 14 | 18 | 22 | 26 | 30 | | CARQUINEZ STRAIT AT CROCKETT | E0B80352133 | 10,100 | 7,710 | 6,920 | 7,330 | 11,400 | | 9,460 | 10,300 | | CARQUINEZ STRAIT AT MARTINEZ | E0B80192078 | 5,270 a | 6,220 a | 3,180 ae | 2,260 | 7,960 a | 5,220 a | 5,630 ae | 8,310 | | SUISUN BAY AT PORT CHICAGO | E0B80342023 | 4,240 | 2,610 | | | 6,190 | 2,180 | 5,030 | | | SUISUN BAY AT NICHOLS | E0B80301590 | 4,310 d | 2,230 | | 1,390 | 5,320 | | | 5,070 | | SACRAMENTO RIVER AT PITTSBURG | в9080231530 | 170 | | 49 | 36 | 336 | | 59 | 172 | | SACRAMENTO RIVER AT COLLINSVILLE | B9D80441513 | 340 | 42 a | 25 | 49 | 74 a | 18 bd | 100 | 191 | | Station | Stotion | | | | January | 1968 | | | | | 31011011 | Number | 2 | 6 | 10 | 14 | 18 | 22 | 26 | 30 | | CARQUINEZ STRAIT AT CROCKETT | E0B80352133 | Broken | 7,660 | | 8,860 | 6,460 | 7,180 | 8,860 | 8,520 | | CARQUINEZ STRAIT AT MARTINEZ | E0B80192078 | 4,860 ad | 2,510 d | 7,690 a | 7,920 | | 5,240 | 7,060 | 4,880 | | | E0B80342023 | | 2,770 | 9,340 | 4,590 | 1,640 | 3,830 | | | | SUISUN BAY AT PORT CHICAGO | | | | 7 050 | 4,090 | 1,100 | 1,590 | 4,310 | 2,590 | | SUISUN BAY AT PORT CHICAGO SUISUN BAY AT NICHOLS | E0B80301590 | 862 | 2,540 | 7,850 | | | | | | | | E0B80301590
B9D80231530 | 862 | 2,540 | 7,830
718 d | 179 bd | | 36 | 68 | 132 | ^{*} Samples taken at four-day intervals approximately one and one-half hours after high high tide. c Taken two days later. a Taken of following day. d Taken over one hour off scheduled time. b Taken on following day. e Taken on preceding day. #### SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS* (Chlorides in Milligrams Per Liter) | Station | Station | | | | | | | | | |----------------------------------|-------------|----------|----------|--------|----------|----------|---------|---------|---------| | Station | Number | 2 | 6 | 10 | 14 | 18 | 22 | 26 | 30 | | CARQUINEZ STRAIT AT CROCKETT | E0B80352133 | 4,790 | 6,100 | 7,660 | 7,400 | 7,110 | 4,410 | 3,430 | | | CARQUINEZ STRAIT AT MARTINEZ | E0B80192078 | 2,010 | 2,870 | 2,390 | 5,650 | 2,850 a | 670 ae | 190 a | | | SUISUN BAY AT PORT CHICAGO | E0B80342023 | 431 | 302 | 1,630 | 1,770 | 1,050 | | - 1 | | | SUISUN BAY AT NICHOLS | E0B80301590 | 148 | 1,960 | 2,350 | | 785 | 48 | 20 | | | SACRAMENTO RIVER AT PITTSBURG | B9D80231530 | 38 a | | 28 | 32 | 35 | | | | | SACRAMENTO RIVER AT COLLINSVILLE | B9D80441513 | 16 | 17 | 17 | 18 | | 14 | 9 | | | | Station | | | | March | 1968 | | | | | Station | Number | 2 | 6 | 10 | 14 | 18 | 22 | 26 | 30 | | CARQUINEZ STRAIT AT CROCKETT | E0B80352133 | 2,880 | 1,820 | 4,500 | 6,350 | 4,310 ad | 5,760 | | 7,420 s | | CARQUINEZ STRAIT AT MARTINEZ | E0B80192078 | 610 | 274 | 1,860 | 3,580 | 147 a | 2,450 | 980 a | 4,580 | | SUISUN BAY AT PORT CHICAGO | E0B80342023 | 202 | | 174 | | 98 | | | 1,760 | | SUISUN BAY AT NICHOLS | E0B80301590 | 16 | 12 | 87 | 444 | 50 | 35 | 116 | 1,090 | | SACRAMENTO RIVER AT PITTSBURG | B9D80231530 | 22 | | 20 | | 20 | 22 d | 17 | 21 4 | | SACRAMENTO RIVER AT COLLINSVILLE | B9D80441513 | 8 | 8 | | 16 | 13 | 16 | 12 | 35 & | | Station | Station | | | | April | 1968 | | | l | | | Number | 2 | 6 | 10 | 14 | 18 | 22 | 26 | 30 | | CARQUINEZ STRAIT AT CROCKETT | E0B80352133 | | 5,900 | 9,920 | 11,500 | 9,250 | 9,920 | | 11,500 | | CARQUINEZ STRAIT AT MARTINEZ | E0B80192078 | 2,750 a | 4,900 ae | 8,000 | 5,000 a | 9,050 | 6,550 a | 8,180 | 9,920 | | SUISUN BAY AT PORT CHICAGO | E0B80342023 | 1,950 ad | 1,120 | 3,750 | 5,100 | | 4,200 | | | | SUISUN BAY AT NICHOLS | E0B80301590 | | 610 | 3,820 | 4,650 | 4,220 | 3,300 | | 6,520 | | SACRAMENTO RIVER AT PITTSBURG | B9D80231530 | 23 а | 23 | 50 bd | 187 a | 204 d | | | | | SACRAMENTO RIVER AT COLLINSVILLE | B9080441513 | 18 | 20 | 20 | | 525 | 331 a | | 1,360 | | | Stotion | | | | May | 1968 | | | | | Station | Number | 2 | 6 | 10 | 14 | 18 | 22 | 26 | 30 | | CARQUINEZ STRAIT AT CROCKETT | E0B80352133 | 11,200 | | | | | | 12,000 | 11,500 | | CARQUINEZ STRAIT AT MARTINEZ | E0B80192078 | 6,790 a | 7,830 a | 10,400 | 6,920 a | 9,100 ed | 9,220 | 9,000 | 10,500 | | SUISUN BAY AT PORT CHICAGO | E0B80342023 | 7,050 | | | 9,190 ed | 5,440 | | 7,120 | 7,250 | | SUISUN BAY AT NICHOLS | E0B80301590 | 6,420 | 4,910 ad | 7,100 | | 4,540 | 2,140 | 5,980 | 4,030 | | SACRAMENTO RIVER AT PITTSBURG | B9080231530 | | | 894 a | | 971 | | 750 a | | | SACRAMENTO RIVER AT COLLINSVILLE | B9D80441513 | 1,540 | 940 a | | 1,630 | 1,700 f | 1,425 f | 1,750 f | 1,800 f | | | | | | | | | | | | ^{*} Samples taken at four-day intervals approximately one and one-half hours after high high tide. a Taken of tollowing day. d Taken over one hour off acheduled time. b Taken on following day. e Taken on preceding day. c Taken two days later. f Values from chlorida recorder. ## TABLE D-4 SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS * (Chlorides in Milligrams Per Liter) | Stotlon | Stoflon | | | | June | 1968 | | | | | | |--|-------------------------------------|-------------|---------------------------|----------------|-------------------|-----------------|------------------|--------------------|------------------------------------|--|--| | 31011011 | Number | 2 | 6 | 10 | 14 | 18 | 22 | 26 | 30 | | | | CARQUINEZ STRAIT AT CROCKETT | E0B80352133 | 10,200 | 12,900 a | 13,500 | 12,600 | 13,100 a | 12,600 | 14,000 | 11,500 | | | | CARQUINEZ STRAIT AT MARTINEZ | E0B80192078 | 8,250 | 8,470 | 9,170 a | 10,200 | 9,120 e | 8,740 a | 10,400 a | 9,930 | | | | | | | ,,,,, | ,, | 8,010 | 7,180 e | 7,480 | 10,400 | 7,810 | | | | SUISUN BAY AT PORT CHICAGO | E0B80342023 | 4,950 | | | | | | | | | | | SUISUN BAY AT NICHOLS | E0B80301590 | 4,650 | 6,530 | 8,830 | 7,090 | 6,500 e | 7,520 | 6,260 a | 7,060 | | | | SACRAMENTO RIVER AT PITTSBURG | B9D80231530 | 1,080 | | 1,800 d | | | 1,110 a | 1,750 a | 1,790 | | | | SACRAMENTO RIVER AT COLLINSVILLE | B9D80441513 | | | 1,440 a | 1,700 d | 1,630 a | 1,710 a | 2,220 ad | | | | | | Station | | | | July | 1968 | | | | | | | Station | Number | 2 | 6 | 10 | 14 | 18 | 22 | 26 | 30 | | | | CARQUINEZ STRAIT AT CROCKETT | E0B80352133 | 13,600 | 1 11 | 14,600 | 12,800 | 14,800 e | 13,300 | | | | | | CARQUINEZ STRAIT AT MARTINEZ | E0B80192078 | 10,400 a | 11,800 a | 12,600 | 10,700 | 8,180 a | 12,500 | 13,600 | 8,320 | | | | SUISUN BAY AT PORT CHICAGO | E0B80342023 | 8,180 | 9,590 | 10,600 | 8,230 | 8,540 e | 10,300 | 6,820 a | 7,980 | | | | SUISUN BAY AT NICHOLS | E0B80301590 | 7,280 | 9,370 | 9,590 | 7,350 | 7,640 e | 9,420 | 9,730 | 8,200 | | | | SACRAMENTO RIVER AT PITTSBURG | B9D80231530 | | 2,340 a | | 2,820 a | | 2,730 a | | | | | | SACRAMENTO RIVER AT COLLINSVILLE | B9D80441513 | 2,420 a | 2,600 a | 2,510 a | 2,630 a | | 2,740 a | 3,820 bd | 2,720 | | | | | | | | | | | | | | | | | Station | Station | August 1968 | | | | | | | | | | | | Number | 2 | 6 | 10 | 14 | 18 | 22 | 26 | 30 | | | | CARQUINEZ STRAIT AT CROCKETT | E0B80352133 | | | | 13,600 | 13,100 e | | 12,400 | 13,600 | | | | CARQUINEZ STRAIT AT MARTINEZ | E0B80192078 | 11,100 e | 11,200 | 10,500 a | 8,620 a | 9,930 e | 8,570 a | 9,610 | 10,200 | | | | SUISUN BAY AT PORT CHICAGO | E0B80342023 | 9,250 e | 10,700 bd | 9,420 | 8,490 | | 5,390 a | 6,160 | 8,960 | | | | SUISUN BAY AT NICHOLS | E0B80301590 | | | 8,470 | 7,860 | 7,620 e | 7,480 | 5,990 | 8,280 | | | | SACRAMENTO RIVER AT PITTSBURG | B9D80231530 | | 1,890 a | 2,230 a | | 1,610 a | 1,350 abd | | 1,130 | | | | SACRAMENTO RIVER AT COLLINSVILLE | B9D80441513 | 2,130 a | 2,110 | | | 1,670 ad | 1,560 a | 1,650 | 1,100 | | | | | | | | | | | | | | | | | | Stotlon | | | | Septembe | er 1968 | | | | | | | Station | | | 6 | 10 | 14 | 18 | 22 | 26 | 30 | | | | Station | Number | 2 | 0 | | | | | | | | | | Station CARQUINEZ STRAIT AT CROCKETT | Number
E0B80352133 | 2 | 13,600 | 12,900 | 11,300 | 11,300 | 13,000 | | 11,100 | | | | | | 8,930 a | | 12,900 | | 11,300
8,790 | 13,000
8,650 | 8,060 ade | | | | | CARQUINEZ STRAIT AT CROCKETT | E0B80352133 | | 13,600 | - | 11,300 | | | 8,060 ade
8,080 | 12,500 | | | | CARQUINEZ STRAIT AT CROCKETT CARQUINEZ STRAIT AT MARTINEZ | E0B80352133 | 8,930 a | 13,600 | 9,940 | 11,300
7,810 a | 8,790 | 8,650 | | 12,500 | | | | CARQUINEZ STRAIT AT CROCKETT CARQUINEZ STRAIT AT MARTINEZ SUISUN BAY AT PORT CHICAGO | E0B80352133 E0B80192078 E0B80342023 | 8,930 a | 13,600
11,200
8,400 | 9,940
6,540 | 11,300
7,810 a | 8,790 | 8,650
4,750 a | 8,080 | 11,100
12,500
8,650
7,620 | | | ^{*} Samples taken at four-day intervals approximately one and one-half hours after high high tide. a Taken efter low high tide. b Taken on following day. d Taken over one hour off acheduled time. e Taken on preceding day. b Taken on following dey. c Taken two days later. #### NUTRIENTS IN SURFACE WATER #### Abbreviations and Chemical Codes #### NITRATE SERIES NO₃ - Nitrate NO₂ - Nitrite ORG - Organic Nitrogen NH₄ - Ammonium TOTAL - Total Nitrogen N - Nitrogen ## PHOSPHATE SERIES ORTHO - Ortho-Phosphate (not filtered) HYDRO - Hydrolizable Phosphates (not filtered) TOTAL - Total and Organic Phosphates (not filtered) SAMP - Codes for agency collecting sample 5001 - U. S. Bureau of Reclamation 5050 - Department of Water Resources LAB Codes for laboratory performing analysis 5006 - Laboratory at McClellan Air Force Base used by U. S. Bureau of Reclamation 5050 - Department of Water Resources Laboratory at Bryte # TABLE D-5 NUTRIENTS IN SURFACE WATER | 0 | | | | NUTRIEN | TS (Mg/ | /L) | | | | | | AISCELLA | NEOL | S NUT | RIENTS | | | | | | |---------------------------|-----------------|----------------------------|---------|----------|----------|----------|------|------|------|-------|----|----------|------|-------|--------|----|------
-------|----|-----| | TIME | NO ₃ | NITROGE
NO ₂ | | ES AS N | | PHOSPH/ | | | CODE | VALUE | UR | VALUE | | | VALUE | UR | CODE | VALUE | UR | SA | | po 1200.0 | O SAN LO | ORENZO F | IVER A | T BIG TE | REES | | Т | | | | | | | | | | | | | | | 11-21-67
0735 | 0.4 | 0.00 | 0.3 | 0.13 | | 0.18 | 0.02 | 0.26 | | | | | | | | | | | - | 50 | | 01-23-68 | 0.3 | 0.00 | 0.1 | 0.10 | | 0.13 | 0.05 | 0.22 | | | | | | | | | | | | 50 | | 03-13-68 | 0.2 | 0.00 | 0.6 | 0.14 | | 0.15 | 0.13 | 0.4 | | | | | | | | | | | | 50 | | 05-22-68 | 0.22 | 0.00 | 0.2 | 0.07 | | 0.13 | 0.05 | 0.20 | | | | | | | | | | | | 50 | | 07-02-68 | 0.16 | 0.00 | 0.2 | 0.01 | | 0.18 | 0.09 | 0.28 | | | | | | | | | | | | 50 | | 0635
09-05-68
0630 | 0.02 | 0.00 | 0.2 | 0.06 | | 0.05 | 0.04 | 0.10 | | | | | | | | | | | | 50: | | DO 3100.00 | SOOHEL | . CREEK | NEAR S | OOUEL. | | | | | | | | | | | | | | | | | | 05-21-68
1400 | | | | | | 0.10 | | | | | | | | | | | | | ī | 505 | | 01 1250.00 | D PAJARO | RIVER | AT CHI | TTENDEN | | | | | | | | | | | | | | | | | | 11-11-67
0800 | 5.3 | 0.06 | 0.9 | 0.19 | | 0.09 | 0.01 | 0.13 | | | | | | | | | | | | 50. | | 01-17-68
0845 | 6.5 | 0.04 | 0.9 | 0.42 | | 0.09 | 0.04 | 0.17 | | | | | | | | | | | | 505 | | 03-20-68 | 2.5 | 0.06 | 0.8 | 0.18 | | 0.08 | 0.05 | 0.15 | | | | | | | | | | | | 505 | | 05-09-68
0840 | 7.0 | 0.10 | 1.2 | 0.16 | | 0.09 | 0.05 | 0.14 | | | | | | | | | | | | 505 | | 07 -0 9-68
0815 | 1.8 | 0.04 | 1.4 | 0.07 | | 0.11 | 0.04 | 0.27 | | | | | | | | | | | | 505 | | D1 1371.50 | UVAS C | REEK NE | AR MORO | GAN HILL | | | | | | | | | | | | | | | | | | 05-21-68 | | | | | | 0.01 | | | | | | | | | | | | | | 505 | | D2 1220.00 | | | | PRECKEL | .S´ | | | | | | | | | | | | | | | | | 11-15-67
0645 | 0.8 | 0.04 | 0.7 | 0.69 | | 0.29 | 0.11 | 0.4 | | | | | | | | | | | | 505 | | 01-17-68
0700 | 4.4 | 0.22 | 1.6 | 8.1 | | 3 | 2 | 5 | | | | | | | | | | | | 505 | | 03-20-68
0645 | 0.4 | 0.03 | 1.1 | 0.31 | | 0.24 | 0.26 | 0.5 | | | | | | | | | | | | 505 | | 05-09-68
0700 | 2.5 | 0.83 | 2.8 | 9.4 | | 8 | 5 | 13 | | | | | | | | | | | | 505 | | 07 - 09-68
0650 | 3.3 | 0.14 | 2.0 | 13 | | 14 | 4 | 19 | | | | | | | | | | | | 505 | | ЕО В 736.2 | 211.6 | SAN FRAN | CISCO : | BAY AT S | SAN MATE | O BRIDGE | | | | | | | | | | | | | = | | | 10-05-67
0740 | 0.6 | 0.02 | 0.4 | 0.03 | | 0.31 | 0.09 | 0.4 | | | | | | | | | | | | 505 | | 12-04-67
0745 | 0.6 | 0.02 | 1.1 | 0.50 | | 0.28 | 0.12 | 0.5 | | | | | | | | | | | | 505 | | 02-16-68
0745 | 0.8 | 0.03 | 0.5 | 0.04 | | 0.17 | 0.09 | 0.4 | | | | | | | | | | | | 505 | | 04-16-68
0850 | 0.21 | 0.00 | 0.3 | 0.00 | | 0.18 | 0.12 | 0.4 | | | | | | | | | | | | 505 | | 06-12-68
0740 | 0.09 | 0.00 | 0.5 | 0.15 | | 0.17 | 0.13 | 0.5 | | | | | | | | | | | | 505 | | 08-09-68
0710 | 0.2 | 0.00 | 0.0 | 0.08 | | 0.20 | 0.07 | 0.3 | | | | | | | | | | | | 505 | | EO B 748.4 | 228.2 | SAN FRAN | CISCO | BAY AT I | FORT POI | NT | | | | | | | | | | | | | | | | 10-05-67
0740 | 0.3 | 0.01 | 0.2 | 0.03 | | 0.08 | 0.01 | 0.10 | | | | | | | | | | | | 505 | | 12-04-67
0855 | 0.2 | 0.01 | 0.9 | 0.21 | | 0.07 | 0.03 | 0.14 | | | | | | | | | | | | 505 | | 02-16-68
0845 | 0.5 | 0.01 | 0.3 | 0.03 | | 0.06 | 0.02 | 0.10 | | | | | | | | | | | | 505 | | 04-16-68
0940 | 0.27 | 0.01 | 0.2 | 0.29 | | 0.06 | 0.03 | 0.11 | | | | | | | | | | | | 505 | | 06-12-68
0820 | 0.32 | 0.01 | 0.4 | 0.36 | | 0.09 | 0.11 | 0.32 | | | | | | | | | | | | 505 | | 08-09-68
0750 | 0.3 | 0.01 | 0.2 | 0.03 | | 0.12 | 0.01 | 0.17 | | | | | | | | | | | | 505 | # TABLE D-5 NUTRIENTS IN SURFACE WATER | | | | | | S (Mg/ | | | | | | | | MISCELL | ANEOL | JS NUT | RIENTS | _ | _ | | | | | |------------------|-----------------|-----------------|---------|----------|----------|----------|---------|--------|------|-------|----|------|---------|-------|--------|--------|----|------|-------|----|------|-----| | TIME | NO ₃ | NO ₂ | ORG | NH4 | TOTAL | ORTHO | | | COOE | VALUE | UR | CODE | VALUE | UR | CODE | VALUE | UR | CODE | VALUE | UR | SAMP | LA | | EO B 749.2 | 222.4 | SAN FRA | NCISCO | BAY AT | TREASURI | E ISLAND | | | | | | | | | | | | | | | | | | 10-05-67 0615 | 0.3 | 0.01 | 0.2 | 0.03 | | 0.09 | 0.02 | 0.11 | | | | | | | | | | | | | 5050 | 505 | | 12-05-67
0905 | 0.4 | 0.01 | 0.6 | 0.12 | | 0.10 | 0.09 | 0.21 | | | | | | | | | | | | | 5050 | 505 | | 02-15-68
0710 | 0.4 | 0.02 | 0.3 | 0.11 | | 0.08 | 0.07 | 0.20 | | | | | | | | | | | | | 5050 | 505 | | 04-15-68
0810 | 0.29 | 0.01 | 0.0 | 0.00 | | 0.11 | 0.04 | 0.17 | | | | | | | | | | | | | 5050 | 503 | | 06-11-68
0704 | 0.27 | 0.01 | 1.4 | 0.04 | | 0.10 | 0.04 | 0.20 | | | | | | | | | | | | | 5050 | 505 | | 08-08-68
0650 | 0.3 | 0.01 | 0.7 | 0.04 | | 0.13 | 0.02 | 0.25 | | | | | | | | | | | | | 5050 | 50 | | EO B 757.7 | 225.6 | SAN PAB | LO BAY | AT POIN | T SAN PA | ABLO | | | | | | | | | | | | | | | | Н | | 10-04-67
0805 | 0.4 | 0.03 | 0.7 | 0.07 | | 0.09 | 0.03 | 0.15 | | | | | | | | | | - 1 | | | 5050 | 50. | | 12-05-67
1045 | 0.5 | 0.02 | 0.6 | 0.00 | | 0.09 | 0.05 | 0.19 | | | | | | | | | | | | | 5050 | 50 | | 02-16-68
0945 | 0.6 | 0.02 | 0.8 | 0.15 | | 0.07 | 0.09 | 0.20 | | | | | | | | | | | | | 5050 | 50 | | 04-16-68
1040 | 0.50 | 0.04 | 1.8 | 0.34 | | 0.09 | 0.08 | 0.22 | | | | | | | | | | 1 | | | 5050 | 50. | | 06-12-68
0920 | 0.84 | 0.09 | 2.7 | 1.2 | | 0.19 | 0.11 | | | | | | | | | | | | | | 5050 | 50. | | 08-09-68
0855 | 0.4 | 0.03 | 0.0 | 0.04 | | 0.09 | 0.03 | 0.17 | | | | | | | | | | 1 | | | 5050 | 50. | | EO B 802.3 | 207.1 | SUISUN | BAY OF | BULLS | HEAD PO | INT AT M | ARTINEZ | : | | | | | | | | | | | | | | | | 02-27-68 | 0.5 | < 0.1 | 0.36 | 0.25 | 1.11 | 0.13 | | 0.16 | | | | | | | | | | | | | 5001 | 50 | | 03-29-68
0945 | <0.10 | <0.10 | 0.63 | 0.12 | 0.75 | 0.05 | | 0.14 | | | | | | | | | | | | | 5001 | 50 | | 04-23-68
1205 | 0.6 | <0.1 | 0.82 | <0.05 | 1.42 | 0.05 | | 0.07 | | | | | | | | | | | | | 5001 | 50 | | 05-20-68
1230 | <0.5 | <0.5 | 0.70 | < 0.05 | 0.70 | 0.12 | | 0.15 | | | | | | | | ~ | | | | | 5001 | 50 | | 08-16-68
1325 | 0.2 | <0.1 | 0.8 | <0.1 | 1.0 | 0.08 | | 0.16 | | | | | | | | | | | | | 5001 | 50 | | 09-05-68
1325 | <0.1 | <0.1 | 1.7 | <0.1 | 1.7 | < 0.1 | | <0.1 | , | | | | | | | | | | | | 5001 | 50 | | 09-27-68
0900 | 0.4 | <0.1 | 0.5 | 0.4 | 1.3 | 0.10 | | 0.11 | | | | | | | | | | | | | 5001 | 500 | | EO B 802.8 | 155.0 | SACRAME | NTO RIV | VER AT C | HIPPS I | SLAND | | | | | | | | | | | | | | | | П | | 01-26-68 | 0.45 | < 0.05 | 0.37 | 0.04 | 0.86 | 0.00 | | 0.32 | | | | | | | | | | | | | 5001 | 50 | | 02-27-68 | 0.5 | <0.1 | 0.41 | 0.18 | 1.09 | 0.20 | | 0.22 | | | | | | | | | | | | | 5001 | 50 | | 05-20-68
1240 | <0.5 | < 0.5 | 1.50 | 0.0 | 1.50 | 0.13 | | 0.17 | | | | | | | | | | | | | 5001 | 50 | | 06-18-68
1305 | 0.2 | 0.0 | 1.20 | 0.0 | 1.40 | 0.0 | | 0.17 | | | | | | | | | | | | | 5001 | 50 | | 07-18-68
1245 | 0.4 | <0.1 | 0.75 | <0.1 | 0.75 | < 0.1 | | 0.1 | | | | | | | | | | | | | 5001 | 50 | | 08-02-68
0845 | 0.2 | <0.1 | <0.1 | 0.1 | 0.2 | < 0.16 | | < 0.16 | | | | | | | | | | | | | 5001 | 50 | | 08-15-68
1100 | 0.3 | < 0.1 | < 0.1 | < 0.1 | 0.3 | 0.08 | | 0.26 | | | | | | | | | | | | | 5001 | 50 | | 09-27-68
1025 | 0.3 | <0.1 | 0.6 | < 0.1 | 0.9 | 0.10 | | 0.12 | | | | | | | | | | | | | 5001 | 50 | | EO B 802.8 | 3 207.1 | SUISUN | BAY NE. | AR BENIC | LA | | | | | | | | | | | | | | | | | | | 01-26-68 | | < 0.05 | | | 1.22 | 0.08 | | 0.80 | | | | | | | | | | | | ٠ | 5001 | 50 | | 02-27-68
1230 | 0.3 | < 0.1 | 0.30 | 0.13 | 0.73 | 0.09 | | 0.13 | | | | | | | | | | | | | 5001 | 50 | | EO B 803.2 | 2 204.8 | SUISUN | BAY AB | OVE AVON | PIER | <0.1 | 0.9 | 0.10 | | 0.11 | | | | | | | | | | | | | 5001 | 50 | TABLE D-5 NUTRIENTS IN SURFACE WATER | DATE | | | | NUTRIENT | | | | | | | MISCELLANE | ous | NUTRIENTS | | | | | | |------------------|-----------------|---------|---------|----------|----------|---------|-------------|------|---------|------|------------|-----|------------|------|-----------|-----|------|------| | TIME | NO ₃ | NOZ | N SERIE | S AS N | | | HYDRO TOTAL | CODE | VALUE U | CODE | VALUE U | R | CODE VALUE | UR C | OOE VALUE | UR | SAMP | LAB | | EO 8 803.6 | 159.3 | SUISUN | BAY OFF | MIDDLE | POINT | | | | | | | | | | | | | | | 01-26-68 | 0.60 | <0.05 | 0.21 | 0.28 | 1.09 | 0.12 | 0.76 | | | | | | | | | | 5001 | 5006 | | 02-27-68 | 0.5 | < 0.1 | 0.56 | 0.10 | 1.16 | 0.09 | 0.17 | | | | | | | | | | 5001 | 5006 | | 03-20-68
1220 | 1.7 | <0.1 | 0.69 | 0.17 | 2.66 | 0.06 | 0.08 | | | | | | | | | | 5001 | 5006 | | 03-21-68 | 1.7 | < 0.1 | 0.70 | 0.24 | 2.74 | 0.07 | 0.09 | | | | | | | 4 | | | 5001 | 5006 | | 03-21-68
0530 | 1.7 | <0.1 | 0.56 | 0.40 | 2.66 | 1.00 | 1.50 | | | | | | | | | | 5001 | 5006 | | 03-21-68 | 2.2 | <0.1 | 0.63 | 0.45 | 3.38 | 0.04 | 0.23 | | | | | | | | | | 5001 | 5006 | | 05-20-68
1140 | <0.5 | <0.5 | 1.50 | 0.0 | 1.50 | 0.12 | 0.14 | | | | | | | | | | 5001 | 5006 | | 06-18-68
1240 | 0.2 | 0.0 | 0.90 | 0.07 | 1.17 | < 0.01 | 0.01 | | | | | | | | | | 5001 | 5006 | | 07-18-68
1220 | 0.4 | <0.1 | 0.9 | <0.1 | 1.3 | 0.12 | 0.16 | | | | | | | | | | 5001 | 5006 | | 08-15-68
1040 | 0.3 | <0.1 | < 0.1 | <0.1 | 0.3 | 0.06 | 0.06 | | | | | | | | | | 5001 | 5006 | | 09-27-68
1000 | 0.3 | <0.1 | 0.8 | <0.1 | 1.1 | 0.10 | 0.11 | | | | | | | | | - | 5001 | 5006 | | EO B 804.0 | 203.0 | SUISUN | BAY NEA | R PREST | ON POINT | ' | 1 | | | | | | | | | | | | | 09-27-68 | 0.3 | <0.1 | 0.6 | 0.1 | 0.9 | 0.10 | 0.12 | | | | | | | | | | 5001 | 5006 | | t
EO B 804.4 | 156.2 | HONKER | BAY NEA | R WHEEL | ER POINT | | | | | | | | | | | | | | | 1103 | 0.09 | 0.0 | 0.33 | 0.12 | 0.54 | 1.15 | 3.2 | | | | | | | | | | 5001 | 5006 | | 1300 | 0.5 | <0.1 | 0.37 | 0.10 | 0.97 | 0.23 | 0.43 | | | | | | | | | - / | 5001 | 5006 | | 3-20-68
2000 | 1.7 | < 0.1 | 0.48 | 0.09
 2.37 | 0.08 | 0.11 | 4 | | | | | | | | - 1 | 5001 | 5006 | | 03-21-68 | 1.7 | <0.1 | 0.75 | 0.15 | 2.60 | 0.07 | 0.09 | | | | | | | | | | 5001 | 5006 | | 03-21-68
0805 | 1.7 | <0.1 | 0.55 | 0.25 | 2.50 | 0.15 | 0.23 | | | | | | | | | | 5001 | 5006 | | 03-21-68
1405 | 1.7 | <0.1 | 0.55 | 0.10 | 2.35 | 0.18 | 0.19 | | | | | | | | | | 5001 | 5006 | | 05-20-68
1200 | <0.5 | < 0.5 | 1.05 | 0.0 | 1.05 | 0.13 | 0.15 | | | | | | | | | | 5001 | 5006 | | 06-18-68
1215 | 0.4 | 0.0 | 1.31 | 0.08 | 1.79 | 0.0 | 0.17 | | | | | | | | | | 5001 | 5006 | | 07-18-68
1155 | 0.4 | <0.1 | 0.8 | < 0.1 | 1.2 | 0.1 | 0.16 | | | | | | | | | | 5001 | 5006 | | 1020 | 0.3 | < 0.1 | < 0.1 | < 0.1 | 0.3 | 0.10 | 0.10 | | | | | | | | | | 5001 | 5006 | | 09-26-68
0852 | 0.2 | < 0.1 | 0.8 | <0.1 | 1.0 | 0.10 | 0.11 | | | | | | | | | | 5001 | 5006 | | EO B 807.0 | 202.3 | GRIZZLY | BAY AT | OOLPHI | N NEAR S | UISUN S | LOUGH | | | | | | | | | | | | | 1035 | 0.41 | 0.0 | 0.45 | 0.07 | 0.93 | 1.05 | 1.2 | | | | | | | | | | 5001 | 5006 | | 02-26-68
1230 | 0.5 | <0.1 | 0.10 | 0.09 | 0.69 | 0.12 | 0.18 | | | | | | | | | | 5001 | 5006 | | 3-20-68
1315 | 0.50 | <0.10 | 1.11 | 0.08 | 1.69 | 0.08 | 0.24 | | | | | | | | | | 5001 | 5006 | | 03-20-68
1900 | 1.7 | < 0.1 | 0.60 | 0.08 | 2.48 | 0.03 | 0.10 | | | | | | | | | | 5001 | 5006 | | 03-21-68 | 2.2 | < 0.1 | 1.20 | 0.20 | 3.60 | 0.12 | 0.72 | | | | | | | | | | 5001 | 5006 | | 03-21-68
0700 | 1.7 | <0.1 | 1.88 | 0.23 | 3.81 | 0.06 | 0.08 | | | | | | | | | 1 | 5001 | 5006 | | 03-21-68
1300 | <0.1 | < 0.1 | 0.60 | 0.05 | 0.65 | 0.03 | 0.04 | | | | | | | | | | 5001 | 5006 | | 05-20-68
1055 | < 0.5 | < 0.5 | 0.95 | < 0.05 | 0.95 | 0.14 | 0.17 | | | | | | | | | | 5001 | 5006 | | 06-18-68 | 0.1 | 0.0 | 1.62 | 0.12 | 1.84 | < 0.01 | 0.01 | | | | | | | | | | 5001 | 5006 | TABLE D-5 NUTRIENTS IN SURFACE WATER | DATE | | NITROGE | | NUTRIENT
ES AS N | S (Mg/ | L)
PHOSPHA | TE SER | SASP | | | | | MISCELL | | | | | | | SAMP | LA | |---------------------------------|--------|---------|---------|---------------------|--------|---------------|---------|---------|------|-------|----|------|---------|----|------|-------|----|----------|-------|------|-----| | TIME | NO3 | NOS | ORG | | TOTAL | ORTHO | | | COOE | VALUE | UR | CODE | VALUE | UR | CODE | VALUE | UR | CODE VAL | UE UR | SAME | 1 | | EO B 807.0 | 202.3 | GRIZZLY | BAY A | T DOLPHI | N NEAR | SUISUN SI | LOUGH (| CONTINU | ED) | | | | | | | | | | | | | | 07-18-68 | 0.0 | <0.1 | 0.75 | <0.1 | 0.75 | 0.1 | 1 | 0.22 | | | | | | | | | | | | 5001 | 50 | | 08~15~68
0945 | 0.3 | < 0.1 | <0.1 | < 0.1 | 0.3 | 0.10 | | 0.14 | | | | | | | | | | | | 5001 | 50 | | 09-26-68
0821 | 0.2 | <0.1 | 0.6 | < 0.1 | 0.8 | 0.10 | | 0.12 | | | | | | | | | | | | 5001 | 50 | | r2 1100 F0 | | | , nameo | | NO. | 1 1 | 1 | | | | | | | | | | | | | | | | E3 1100.50
10-04-67 | 0.3 | 0.12 | | 0.14 | NG | 0.15 | 0.03 | 0.29 | | | | | | | | | | | | 5050 | 50 | | 0755
12-05-67 | 0.7 | 0.03 | 1.0 | 0.00 | | 0.06 | 0.01 | 0.12 | | | | | | | | | | | | 5050 | 50 | | 1025 | 1.3 | 0.03 | 0.3 | 0.21 | | 0.08 | 0.05 | 0.15 | | | | | | | | | | | | 5050 | 50 | | 0825
04-15-68 | 1.00 | 0.03 | 0.8 | 0.24 | | 0.13 | 0.07 | 0.23 | | | | | | | | | | | | 5050 | 50 | | 0930
06-11-68 | 0.08 | 0.00 | 0.8 | 0.02 | | 0.07 | 0.03 | 0.13 | | | | | | | | | | | | 5050 | 50 | | 0825
08-08-68 | 0.2 | 0.01 | 0.7 | 0.00 | | 0.09 | 0.06 | 0.21 | | | | | | | | | | | | 5050 | 50 | | 0800 | E5 1150.00 | Ш | | 1030 | 1.9 | 0.05 | 0.6 | 0.19 | | 0.8 | 0.5 | 1.4 | | | | | | | | | | | | 5050 | 50 | | 1015 | 2.0 | 0.07 | 0.4 | 0.35 | | 0.9 | 0.1 | 1.0 | | | | | | | | | | | | 5050 | 5 | | 3-13-68
1005 | 1.6 | 0.04 | 1.8 | 0.41 | | 1.0 | 0.3 | 1.4 | | | | | | | | | | | | 5050 | 5 | | 0930
0930 | 1.4 | 0.01 | 0.5 | 0.09 | | 0.8 | 0.4 | 1.2 | | | | | | | | | | | | 5050 | 5 | |)7-02-68
1000 | 0.65 | 0.00 | 0.4 | 0.00 | | 0.32 | 0.18 | 0.5 | | | | | | | | | | | | 5050 | 5 | | 09-05-68
0915 | 1.0 | 0.05 | 0.6 | 0.08 | | 0.13 | 0.11 | 0.03 | | | | | | | | | | | | 5050 | 50 | | E5 1400.00 | ARROYO | DEL VA | LLE NE | AR LIVER | MORE | | · | | | | | | | | | | | | | | ı | | 01-18-68 | 0.3 | 0.00 | 0.2 | 0.18 | | 0.01 | 0.00 | 0.02 | | | | | | | | | | | | 5050 | 50 | | 02-01-68
1005 | 1.4 | 0.00 | 0.9 | 0.09 | | 0.09 | 0.03 | 0.23 | | | | | | | | | | | | 5050 | 50 | | 03-06-68
0915 | 0.0 | 0.00 | 0.2 | 0.17 | | 0.01 | 0.00 | 0.02 | | | | | | | | | | | | 5050 | 50 | | 04 - 03-68
0850 | 0.0 | 0.00 | 0.2 | 0.12 | | 0.01 | 0.01 | 0.03 | | | | | | | | | | | | 5050 | 50 | | 05~01~68
1355 | | | | | | 0.01 | | | | | | | | | | | | | | 5050 | 50 | | 06-05-68
1015 | 0.00 | 0.00 | 0.5 | 0.02 | | 0.02 | 0.01 | 0.04 | | | | | | | | | | | | 5050 | 50 | | F9 1080.50 | RUSSIA | N RIVER | AT GU | I I | l
E | ' | ' | | | | | | | | | | | | | | ı | | 11-15-67 | 0.7 | 0.06 | | 0.82 | -
 | 0.08 | 1.62 | 1.7 | | | | | | | | | | | | 5050 | 50 | | 0810 | 0.7 | 0.01 | 0.2 | 0.25 | | 0.10 | 0.05 | 0.17 | | | | | | | | | | | | 5050 | 5(| | 0810 | 0.4 | 0.00 | 0.3 | 0.11 | | 0.10 | 0.11 | 0.21 | | | | | | | | | | | | 5050 | 50 | | 0825
05-22-68
0810 | 0.31 | 0.02 | 0.4 | 0.06 | | 0.20 | 0.05 | 0.29 | | | | | | | | | | | | 5050 | 50 | | 0810
07-09-68
0820 | 0.04 | 0.00 | 0.3 | 0.06 | | 0.08 | 0.03 | 0.14 | | | | | | | | | | | | 5050 | 51 | | 0620 | 0.83 | 0.00 | 0.4 | 0.06 | | 0.5 | 0.1 | 0.6 | | | | | | | | | | | | 5050 | 50 | | 0000 | - | 1 | | | | | | | | | | | | | | | | | | 411 | #### TABLE D-6 #### PESTICIDES IN SURFACE WATER AND SEDIMENT Abbreviations used in the following table include: BHC - Benzene hexachloride ppDDD - Para para isomer of dichloro diphenyl dichloroethane ppDDE - Para para isomer of dichloro diphenyl ethane <u>DDT</u> - Dichloro diphenyl trichlorethane ppDDT - Para para isomer of dichloro diphenyl trichlorethane Where two pesticides are reported together with a slash mark separating them (ppDDE/Dieldrin, Simazine/Atrazine, etc.), the reported concentration is an undifferentiated total of the two. Either of the two pesticides could make up the entire total. # TABLE D-6 PESTICIDES IN SURFACE WATER AND SEDIMENT CENTRAL COASTAL AREA | Station | Station
Number | Oate
and time
sampled
P. S.T. | Discharge
in cfs | Specific
conductance
(micromhos
at 25°C) | pH
Field | Pesticides in Wo
(parts per trilli | 200 | Pesticides in Sedime (ports per billion of dry weight) | |---------------------------------------|----------------------------|--|---------------------|---|-------------|--|-------|--| | NAPA RIVER AT DUTTONS LANDING | E31100.50 | 10- 4-67
0755 | | 19400 | 7.3 | BHC
Dieldrin
ppDDD | | 4335 | | | | 2-15-68
0825 | | 7660 | 7.7 | BHC like | == | 7 | | | | 6-11-68
0825 | | 21800 | 8.1 | BHC like | = | 8 | | SAN FRANCISCO BAY AT COYOTE POINT | EOB73552194
(EOEH75.27) | 10- 5-67
0800 | | | | No chlorinated pesticides detected | | No chlorinated pesticides detected | | | | 2-21-68
1030 | | | | BHC like | = | 6 | | | 100 | 6-10-68 | | | | Complex chlorinated compounds as DDT | = 210 | 0 | | SAN FRANCISCO BAY AT FORT POINT | E0B74842282
(E0GJ47.72) | 10- 5-67
0740 | | 47100 | 8.4 | No chlorinated pesticides detected | | | | | | 2-16-68
0845 | | 42300 | 8.2 | BHC like | = 4 | 4 | | | | 6-12-68
0820 | | 48200 | 8.2 | No chlorinated pesticides detected | | | | AN FRANCISCO BAY AT SAN MATEO BRIDGE | EOB73622116
(EOEG85.33) | 10- 5-67
0740 | | 43700 | 8.1 | No chlorinated pesticides detected | | ppDDT = Toxaphene like = | | | | 2-16-68
0745 | | 33400 | 8.0 | BHC like
Aldrin | | 2 4 | | | | 6-12-68
0740 | | 45900 | 8.2 | Dieldrin No chlorinated pesticides detected | = : | 2 | | SAN FRANCISCO BAY AT TREASURE ISLAND | E0B74922224 | 10- 5-67 | | 46100 | 8.4 | | = 1 | 0 | | AN INSTITUTE DATE AT EXCEPTION EDGINE | (EOGH59.55) | 0615 | | 39400 | 7.4 | ppDDT BHC like | = | 2 | | | | 0710 | | 3,400 | ,., | JAKO TIRE | | | | SAN PABLO BAY AT POINT SAN PABLO | EOB75772256
(EOHJ74.01) | 10- 4 - 67
0805 | | 31700 | 8.3 | No chlorinated compounds detected | | Toxaphene like = | | 100 | | 2-16-68
0945 | | 30000 | 8.1 | BHC like | = | 7 | | | | 6-12-68
0920 | | 41200 | 7.6 | BHC like | = 2 | 7 | | SUISUN BAY AT BENICIA | E0B80242082
(E0JG30.19) | 10- 5-67
0955 | | 6010 | 8.0 | Dieldrin
ppDDD
ppDDT | = (| 4 BHC = 6 Toxaphene = 3 | | | | 12- 5-67
1200 | | 13800 | 7.6 | No chlorinated pesticides detected | | | | | | 2-15-68
1000 | | 4330 | 7.2 | Unknown as DDT
BHC like | | 44 | | | | 4-15-68
1100 | | 9220 | 7.9 | внс | = 10 | | | | | 6-11-68
0955 | | 18200 | 8.0 | BHC like
ppDDD
Dieldrin | = , | 9 4 2 2 | | | | 8- 8-68
0930 | | 23800 | 8.4 | No chlorinated pesticides detected | | | #### TABLE D-7 #### PLANKTON ANALYSIS OF SURFACE WATER | DATE | | PH | (NO/ML) | TON | | | М | OST ABI | UNDANT
(GENUS | | LANKTO | ON | | | ZOOPL | ANKTON / L) | | | BUNDAN | | | | |------------------|--------|--------------|-----------------|----------------|--------------------|------------------|--------------|--------------|------------------|-------------|-------------|--------------------|-------------|-------|---------|--------------|------|---------------------|---------------------|------------------|------|------| | TIME | TOTAL | BL-GR
C/F | GREEN
C/F | FLAG
GR/O | DIATOMS
C/P | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | TOTAL | ROTIFER | CRUST | MISC | I | 2 | 3 | SAMP | LAB | |
EO B 736.2 | 211.6 | SAN FRANC | ISCO BAY A | T SAN HAT | TEO BRIDGE | | | | | | | | | | | | | | | | | | | 10-05-67
0740 | 772 | | | 450 | 290
32 | <u>F 99</u> 58.3 | D 03
37.6 | D 66
4.1 | | | | | | 32 | 8 | 24 | | <u>C 02</u>
50.0 | <u>8 99</u>
25.0 | <u>C 50</u> 25.0 | 5050 | 5050 | | 08-09-68
0710 | 446 | | | 220 | 96
130 | F 99
49.3 | D 60
29.1 | D 03
21.5 | | | | | | 24 | 3 | 12 | 9 | C 02
37.5 | M 02
37.5 | | 5050 | 5050 | | EO B 748.4 | 228.2 | SAN FRANC | 1
15CO BAY A | I FORT PO | DINT | | | | | | | | | | | | | | | | | | | 10-05-67
0740 | 254 | | | 190 | 64 | F 99
74.8 | D 03
18.9 | D 02
6.3 | | | | | | 56 | 3 | 50 | 3 | C 02
83.3 | R 99
8.4 | M 03
8.4 | 5050 | 5050 | | 08-09-68
0750 | 1440 | | 64 | 290 | 220
866 | D 60
53.5 | F 99
20.1 | D 03 | G 02
4.4 | D 66 | D 70
2.2 | | | 45 | 20 | 22 | 3 | R 99 | <u>C 02</u>
35.6 | | 5050 | 5050 | | ED B 749.2 | 222.4 | SAN FRANC | ISCO BAY A | T TREASUR | LE ISLAND | | | | | | | | | | | | | | | | | | | 10-05-67
0615 | 452 | | | 260 | 160
32 | <u>F 99</u> 57.5 | D 03
14.1 | D 04 | D 01 | D 66 | | | | 48 | 19 | 29 | | C 02
60.4 | R 99
39.6 | | 5050 | 5050 | | 08-08-68
0650 | 480 | | | 160 | 192
128 | F 99
33.3 | D 03
33.3 | D 72
20.0 | D 07 | D 70
6.7 | | | | 7 | 7 | | | R 99
100 | | | 5050 | 5050 | | ED B 757.7 | 225.6 | SAN PABLO | BAY AT PO | I
INT SAN E | PABLO | | | | | | | | | | | | | | | | | | | 10-04-67
0805 | 350 | | | 190 | 96
64 | <u>F 99</u> 54.3 | D 03
27.4 | D 65 | D 66 | | | | | 152 | 20 | 132 | | C 02
78.9 | R 99
13.2 | | 5050 | 5050 | | 08-09-68
0855 | 480 | | | 190 | 194
96 | F 99
39.6 | D 03
27.1 | D 72
13.3 | D 04
6.7 | D 07 | D 66
6.7 | | | 148 | 19 | 129 | | C 02
81.0 | R 99
12.8 | C 50
6.0 | 5050 | 5050 | | ED B 802.4 | 208.2 | SUISUN BA | Y AT BENIC | I
IA | 10-05-67
0955 | 4910 | | | 770 | 3750
390 | D 03
34.6 | D 02
15.7 | <u>F 99</u> | D 04
13.0 | D 72 | D 66 | D 05 | D 61
2.6 | 437 | 390 | 47 | | R 99
89.2 | C 02 | | 5050 | 5050 | | 08-08-68
0930 | 5728 | | 190 | 1200 | 2456
1882 | D 72
26.2 | D 03
24.4 | F 99
20.9 | D 04 | D 50
6.7 | D 02
6.6 | <u>C 02</u>
3.3 | D 05 | 60 | 60 | | | R 99 | | | 5050 | 5050 | | E3 1100.50 | NAPA R | IVER AT D | UTTONS LAN | DING | 10-04-67
0755 | 1250 | | | 830 | 29 <u>0</u>
130 | F 99
43.2 | F 01
23.2 | D 03
23.2 | D 70
10.4 | | | | | 31 | 6 | 25 | | C 06
80.6 | R 99
19.4 | | 5050 | 5050 | | 08-08-68
0800 | 1724 | | | 350 | 380
994 | D 99
53.9 | D 03
22.0 | <u>F 99</u> | D 72 | | | | | 45 | 32 | 13 | | R 99
71.1 | C 06
28.9 | | 5050 | 5050 | The following are the codes end abbreviations used in this table. #### PHYTOPLANKTON Total - Total phytoplankton count per milliliter Bl-Gr - Blue Green Algae <u>C/F</u> - Coccoid over Filamentous (undifferentiated if dividing line not shown) Green - Green Algae Flag - Flagellates <u>Gr/O</u> - Green over Other Pigmented (undifferentiated if dividing line not shown) C/P - Centric over Pennate (undifferentiated if dividing line not shown) Most Abundent Phytoplankton - ludicates specific genus code over its percentage of total #### ZOOPLANKTON Total - Total zooplankton count per milliliter Crust - Crustacea Misc - Miscellaneous zooplankton | Blue-Gr | een Algse | Green A | gse (Continued) | Diate | Opn.5 | | |---------|-----------------------|----------|-----------------------|-------|-------|-----------------------| | в 99 | Unidentified | Cocco | id (Continued) | Cet | ntr | <u>1c</u> | | Cocco | <u>1d</u> | G 19 | Schroederia | D | | Unidentified Centric | | | | G 20 | Elakatothrix | DI | | Biddulphia | | B 00 | Unidentified Coccoid | G 21 | Sphaerocystis | D (| | Coscinodiscus | | B 03 | Anacystis | G 22 | Selenastrum | | 03 | Cyclotella | | B 06 | Dactylococcopala | G 23 | Tetraedcon | - | 04 | Melosire (selt water) | | | | G 24 | Hormidium | | 05 | Melosire (fresh water | | Filan | entous | | | | 06 | Stephanodiscus | | | | Filam | entous | D (| D7 | Rhizosolenia | | B 50 | Unidentified Filament | ous | | | | | | B 51 | Anabaena | G 50 | Unidentified Filament | ous | | | | B 52 | Aphanizomenon | | | Per | nne | te | | B 55 | Oscillatoria | Flegella | tes | | | | | | | | | D : | | Unidentified Pennate | | Green A | lgae | F 99 | Unidentified | D ! | 51 | Achnenthes | | | | | | | 52 | Amphiprora | | G 99 | Unidentified | Green | | D : | 55 | Asterionalla | | | | | | D : | 57 | Cocconeis | | Cocco | id | F 00 | Unidentified Green | D | 60 | Distons | | | | F 01 | Dinoflagellates | D | 61 | Diploneis | | G 00 | Unidentifled Coccoid | F 03 | Euglena | D | 62 | Fregilaria | | G D2 | Ankistrodesmus | F 07 | Phacus | D | 64 | Gyrosigma | | G 05 | Closterium | F 08 | Trechelomonas | D | 65 | Navicula | | G 07 | Crucigenia | | | D | 66 | Nitzschia | | G 08 | Dictypephaecium | Other | Pigmented | D | 68 | Rhoicosphenia | | G 10 | Lagerheimie | | | D | 70 | Synedra | | G 12 | Occystis | F 50 | Unidentified Other | D | 71 | Tabellaria | | G 15 | Scenedesmus | F 52 | Dinobryon | D | 72 | Skelelonema | | G 16 | Staurastrum | F 55 | Cecatum | | | | | G 18 | Tetrastrum | F 56 | Cryptomonas | | | | | | | | | | | | # R 99 Unidentified Rotifers Crustaces C 99 Unidentified Crustaces Cladocerans C 01 Cladocera C 02 Nauplii C 06 Crab Zoea C 07 Crab Larvae Gopecods C 50 Unidentified Miscellaneous M 02 Annelid Worms M 03 Fish Larvae H 04 Pulvinulina Most Abundant Zooplankton Appendix E GROUND WATER QUALITY #### INTRODUCTION This appendix presents ground water quality data collected during the period from October 1, 1967, through September 30, 1968. The data were collected from a number of major ground water sources in the Central Coastal Area in cooperation with other state, local, and federal agencies. During the 1968 water year, 336 wells were sampled in 20 ground water basins and subbasins or subareas. At the time of field sampling, pH and temperature measurements are normally made. Comments on current conditions are noted in field books which are available in the files of the Department of Water Resources. Laboratory analyses of ground waters were performed in accordance with "Standard Methods for the Examination of Water and Waste Water", 12th Edition, American Public Health Association, New York, N. Y. The Region and Basin and State Well Numbering Systems are described in Appendix C, "Ground Water Measurements", on page 35. The locations of the ground water basins and subbasins are shown on Figure C-1, pages 39, 40, and 41. # INDEX TO MONITORED AREAS GROUND WATER BASINS IN THE CENTRAL COASTAL AREA | Number | <u>Name</u> <u>Page</u> | |--|----------------------------------| | | NORTH COASTAL REGION 1-00.00 | | 1-15.00
1-16.00
1-17.00
1-18.00
1-19.00
1-20.00
1-21.00 | Ukiah Valley | | | SAN FRANCISCO BAY REGION 2-00.00 | | 2-01.00
2-02.00
2-02.01
2-02.02
2-03.00
2-04.00
2-05.00
2-06.00
2-09.00
2-09.01
2-09.02
2-10.00 | Petaluma Valley | | | | | | CENTRAL COASTAL REGION 3-00.00 | | 3-02.00
3-03.00
3-04.00
3-07.00 | Pajaro Valley | #### TABLE E-1 #### MINERAL ANALYSES OF GROUND WATER An explanation of column headings follows: The Lab and Sampler agency codes are as follows: 2400 - Santa Clara Valley Water Conservation District 5000 - U. S. Geological Survey 5050 - Department of Water Resources 5100 - Alameda County Flood Control and Water Conservation District 5112 - Sonoma County 5401 - Alameda County Water District Time - Pacific Standard Time on a 24-hour clock. Temp. - Water temperature in degrees Fahrenheit at the time of field sampling. pH - Measurement of acidity or alkalinity of water. EC - The electrical conductance in micromhos at 25° Celsius. TDS - Gravimetric determination of total dissolved solids at 180° Celsius. SUM - Total dissolved solids determined by addition of analyzed constituents. TH - Total hardness. NCH - Noncarbonate hardness. The Mineral Constituents are as follows: | В | Boron | K | Potassium | |------------------|-------------|------------------|-----------| | Ca | Calcium | Mg | Magnesium | | C1 | Chloride | Na | Sodium | | co ₃ | Carbonate | NO ₃ | Nitrate | | F | Fluoride | SiO ₂ | Silica | | HCO ₃ | Bicarbonate | SOL | Sulfate | | State Well Number
Date Lab | Temp. | pH
Lab | EC
Lab | | Mineral | Canstituer | nts in | | Milliegu | ms per Li
ivalents
Reactan | per Liter | , | | Milli | grams pe | TDS | ŤΗ | |--|--------|-----------|------------|------------------|------------------|------------------|--------|-----------|------------------|----------------------------------|-------------|-----|-----|-------|------------------|-----|-----------| | Time Sampler | | Field | Field | Ca | Мд | No | К | CO 3 | HCO ₃ | | СI | и03 | F | В | SiO ₂ | SUM | NCI | | NORTH COASTAL REGION 1 | .00.00 | | | | | | | | | | | | | | | | | | UKIAH VALLEY 1-15.00 | | | | | | | | | | | | | | | | | | | 14N/12W-05K01 M
7-11-68 5050
1130 5050 | | | 512 | | | | | | | | | | | 0.7 | | | | | 14N/12W-11N01 M
7-11-68 5050
1030 5050 | | 8.3 | <u>409</u> | 28
1.40
34 | 26
2.14
53 | 12
0.52
13 | | 0 | 174
2.85 | | 9.4
0.26 | | | 0.2 | | | 17
34 | | 14N/12W-26K01 M
7-11-68 5050
1300 5050 | 62 | | 428 | | | | | | | | | | | 1.2 | | | | | 15N/12W-35D01 M
7-10-68 5050
1730 5050 | 75 | | 385 | | | | | | | | | | | 0.1 | | | | | 16N/12W-05D01 M
7-10-68 5050
1445 5050 | | 8.5 | 386 | 26
1.30
34 | 19
1.54
40 | 23
1.00
26 | | 5
0.17 | 171
2.80 | | 26
0.73 | | | 0.0 | | | 14 | | 16N/12W-05D02 M
7-10-68 5050
1500 5050 | 62 | |
<u>295</u> | | | | | | | | 15
0.42 | | | 0.0 | | | | | 16N/12W-09Q01 M
7-10-68 5050
1200 5050 | | | 396 | | | | | | | | | | | 0.0 | | | | | 17N/12W-28M01 M
7-10-68 5050
1300 5050 | 61 | 7.9 | 192 | 14
0.70
36 | 9
0.74
39 | 11
0.48
25 | | 0 | 72
1.18 | | 5.5
0.16 | | | 0.0 | | | 7:
1: | | SANEL VALLEY 1-16.00 | | | | | | | | | | | | | | | | | | | 12N/11W-02F01 M
7-11-68 5050
1630 5050 | 63 | | 383 | | | | | | | | | | | 0.2 | | | | | 13N/11W-07D01 M
7-11-68 5050
1330 5050 | 59 | 8.4 | 287 | 20
1.00
33 | 19
1.60
53 | 10
0.44
14 | | 0.07 | 158
2.59 | | 5.2
0.15 | | | 0.2 | | | 130 | | 13N/11W-18D01 M
7-11-68 5050
1415 5050 | 60 | | 418 | | | | | | | | | | | 1.1 | | | | | 13N/11W-18E01 M
7-11-68 5050
1400 5050 | 61 | | 404 | | | | | | | | | 6.8 | | 1.5 | | | | | 13N/11W-19N01 M
7-11-68 5050
1530 5050 | 62 | | 305 | | | | | | | | | | | 0.1 | | | | | 13N/11W-30H01 M
7-11-68 5050
1600 5050 | | 8.3 | 393 | 30
1.50
38 | 24
1.94
50 | 11
0.48
12 | | 0 | 182
2.98 | | 8.2
0.23 | | | 0.1 | | | 172
23 | | ALEXANDER VALLEY 1-17.0 | 00 | | | | | | | | | | | | | | | | | | 09N/08W-07Q01 M
7-12-68 5050
1215 5050 | 75 | | 603 | | | 133
5.78 | | | | | | | 0.9 | 0.4 | | | | | 09N/09W-01P01 M
7-12-68 5050
1145 5050 | 59 | 8.5 | 403 | 33
1.65
38 | 28
2.33
53 | 9.4
0.41
9 | | 6
0.20 | 204
3.34 | | 5
0.14 | | | 0.0 | | | 199
2: | | 10N/09W-26L01 M
7-12-68 5050
1100 5050 | 63 | 8.3 | 625 | 33
1.65
25 | 55
4.56
67 | 13
0.56
8 | | 0 | 320
5.24 | | 8.6
0.24 | | | 0.0 | | | 31: | | 11N/10W-28N01 M
7-12-68 5050
0845 5050 | | | 404 | | | | | | | | | | | 0.4 | | | | | 11N/10W-33G01 M
7-12-68 5050
0945 5050 | | 7.8 | 199 | 12
0.60
32 | 0.52 | 17
0.74
40 | | 0 | 61
1.00 | | 18
0.51 | | | 0.1 | | | 5 | | SANTA ROSA VALLEY 1-18. | .00 | | | | | | | | | | | | | | | | | | | 75 | | <u>527</u> | | | 96
4.18 | | | | | | | | 0.5 | | | | | State Well Number
Date Lab | Temp. | pH
Lob | EC
Lob | | Mineral | Constitu | ents in | | Millieg | oms per l
uivalent:
t Reacta | Liter
s per Lite
nce Value | , | | Milli | groms pe | TDS | TH | |--|-------|------------|------------|-------------------|-------------------|------------------|-------------------------------|------|-------------------|------------------------------------|----------------------------------|------------------|-----|-------|----------|------------|-----------| | Time Sompler | | Field | Field | Co | Мд | No | К | CO 3 | HCO ₃ | SO ₄ | CI | NO ₃ | F | В | S102 | SUM | NCH | | SANTA ROSA VALLEY 1-18 | .00 | | | | | | | | | | | | | | | | | | 06N/07W-17E02 M
7-31-68 5050
1430 5050 | | | 658 | | | | | | | | | | 0.4 | 0.2 | | | | | 06N/07W-18R01 M
7-30-68 5050
1500 5050 | | | 777 | | | | | | | | | 32
0.52 | | | | | | | 06N/08W-03B01 M
7-31-68 5050
1100 5050 | 64 | | 516 | | | | | | | | | 37
0.60 | | | | | | | 07N/06W-29P01 M
7-30-68 5050
1615 5050 | | | 215 | | | 13
0.56 | | | | | | | | | | | | | 07N/07W-15C01 M
7-29-68 5050
1730 5050 | | 8.1 | 261 | 13
0.65
24 | 12
0.99
37 | 24
1.04
39 | | 0 | 143
2.34 | | 5.8
0.16 | | | 0.0 | | | 82 | | 07N/07W-29D01 M
7-31-68 5050
1345 5050 | | 8.3 | 535 | 33
1.65
31 | 20
1.63
31 | 47
2.04
38 | | 0 | 293
4.80 | | 21
0.59 | | | 0.4 | | | 164 | | 07N/08W-03L01 M
7-30-68 5050
0900 5050 | | | 519 | | | 61
2.65 | | | | | | | | | | | | | 07N/08W-05G01 M
7-30-68 5050
0945 5050 | | 8.3 | 504 | 26
1.30
29 | 24
1.96
43 | 30
1.30
28 | | 0 | 153
2.51 | | 49
1.38 | | | 0.0 | | | 163
38 | | 07N/08W-18Q01 M
7-31-68 5050
0900 5050 | 64 | | 714 | | | 65
2.83 | | | | | | | | 0.1 | | | | | 07N/08W-30P01 M
7-31-68 5050
0945 5050 | 65 | 7.5 | 1080 | 60
2.99
30 | 55
4.50
45 | 58
2.52
25 | | 0 | 214
3.51 | | 141
3.98 | | | 0.0 | | | 375 | | 07N/09W-09F01 M
7-30-68 5050
1300 5050 | 64 | 8.0 | <u>153</u> | 8.4
0.42
30 | 4.4
0.36
25 | 15
0.65
45 | | 0 | 1.00 | | 12
0.34 | | | 0.0 | | | 39 | | 07N/09W-36M01 M
7-31-68 5050
1030 5050 | | | 359 | | | 35
1.52 | | | | | | | | 0.0 | | | | | 08N/08W-20Q01 M
7-31-68 5050
1200 5050 | | 8.1 | 483 | 20
1.00
22 | 20
1.68
36 | 45
1.96
42 | | 0 | 211
3.46 | | 35
0.99 | | | 0.1 | | | 134 | | 09N/10W-01C01 M
7-30-68 5050
1145 5050 | 67 | 8.1 | 212 | 13
0.65
29 | 10
0.83
37 | 18
0.78
34 | | 0 | 117
1.92 | | 6.7
0.19 | | | 0.1 | | | 74 | | NDERSON VALLEY 1-19.00 | | | | | | | | | | | | | | | | | | | 13N/14W-02L02 M
9-17-68 5050
0950 5050 | | 7.5 | 222 | 18
0.90
40 | 8.0
0.66
30 | 15
0.65
29 | 0.6 ⁻
0.02
1 | 0.0 | 108
1.77
78 | 6.1
0.13
6 | 9.8
0.28
12 | 4.9
0.08
4 | 0.2 | 0.0 | | 97
116 | 78
0 | | 13N/14W-11A01 M
9-17-68 5050
1120 5050 | | 7.8 | 256 | 25
1.25
47 | 8.1
0.67
25 | 16
0.70
27 | 0.7
0.02
1 | 0.0 | 134
2.20
81 | 3.0
0.06
2 | 8.8
0.25
9 | 12
0.19
7 | 0.2 | 0.0 | | 124
139 | 96
0 | | 14N/14W-18R02 M
9-17-68 5050
1400 5050 | 73 | 7.5
6.0 | 144 | 7.7
0.38
28 | 3.2
0.26
19 | 16
0.70
52 | 0.5
0.01
1 | 0.0 | 48
0.79
58 | 2.1
0.04
3 | 16
0.45
33 | 5.2
0.08
6 | 0.1 | 0.0 | | 94
74 | 32 | | 14N/14W-19B01 M
9-17-68 5050
1310 5050 | | 7.7 | 209 | 13
0.65
31 | 9.1
0.75
35 | 16
0.70
33 | 1.0
0.03
1 | 0.0 | 84
1.38
68 | 4.6
0.10
5 | 20
0.56
27 | 0.1 | 0.2 | 0.2 | | 140
105 | 70
1 | | 14N/14W-34G06 M
9-17-68 5050
1150 5050 | | 8.1 | <u>580</u> | 25
1.25
21 | 16
1.32
22 | 80
3.48
57 | 0.8 | 0.0 | 270
4.43
76 | 0.0 | 49
1.38
24 | 0.0 | 1.4 | 4.0 | | 235
309 | 127 | | POINT ARENA 1-20.00 | | | | | | | | | | | | | | | | | | | 12N/16W-18K01 M
9-10-68 5050
1545 5050 | | 7.2 | 413 | 6.7
0.33
10 | 15
1.23
36 | 40
1.74
51 | 3.9
0.10
3 | 0.0 | 22
0.36
10 | 18
0.37
11 | 55
1.55
44 | 76
1.22
35 | | 0.0 | | 269
225 | 79
61 | | 12N/17W-12L01 M
9-11-68 5050
1700 5050 | | 7.1 | 117 | 1.6
0.08
7 | 3.2
0.26
23 | 18
0.78
68 | 1.0
0.03
3 | 0.0 | 20
0.33
31 | 4.0
0.08
7 | 20
0.56
52 | 6.1
0.10
9 | | 0.1 | | 60
64 | 17 | | State Well Number
Date Lab | Temp. | pH
Lab | EC
Lab | | Mineral | Canstitu | ients in | | Milliegu | | Liter
Sper Liter
nce Value | | | Millio | groms per | Liter | | |--|-------|------------|------------|-------------------|-------------------|---------------------------|------------------|------|-------------------|------------------|----------------------------------|------------------|---|--------|------------------|------------|----------| | Time Sompler | | Field | Field | Co | Мд | Na | К | CO 3 | HC03 | SO ₄ | C I | NO ₃ | F | В | SiO ₂ | TDS
SUM | IT
NC | | INT ARENA 1-20.00 | | | | | | | | | | | | | | | | | | | 12N/17W-13L01 M
9-11-68 5050
1615 5050 | | 8.0 | 350 | 27
1.35
41 | 11
0.90
27 | 23
1.00
30 | 1.4
0.04
1 | 0.0 | 114
1.87
56 | 28
0.58
17 | 28
0.79
24 | 4.7
0.08
2 | | 0.0 | | 184
179 | 11 | | 13N/16W-31M01 M
9-12-68 5050
1030 5050 | | 8.1 | 488 | 33
1.65
37 | 7.9
0.65
15 | 48
2.09
47 | 2.5
0.06 | 0.0 | 102
1.67
38 | 16
0.33
7 | 81
2.28
52 | 8.8
0.14
3 | | 0.1 | | 268
247 | 11 | | 13N/17W-24D01 M
9-12-68 5050
0830 5050 | | 7.3 | 230 | 7.9
0.39
20 | 3.0
0.25
13 | 30
1.31
66 | 0.04 | 0.0 | 24
0.39
20 | 5.6
0.12
6 | 43
1.21
61 | 17
0.27
14 | | 0.0 | | 132
120 | | | 13N/17W-25H01 M
9-12-68 5050
0700 5050 | | 7.8 | 450 | 46
2.30
54 | 5.6
0.46
11 | 33
1.44
34 | 1.4
0.04
1 | 0.0 | 164
2.69
62 | 23
0.48
11 | 38
1.07
25 | 5.0
0.08
2 | | 0.0 | | 255
232 | 1 | | ORT BRAGG TERRACE 1-21 | 1.00 | | | | | | | | | | | | | | | | | | 16N/17W-30M01 M
9-11-68 5050
0830 5050 | | 7.7 | 373 | 12
0.60
19 | 0.90
29 | 34
1.48
48 | 5.2
0.13
4 | 0.0 | 53
0.87
28 | 31
0.64
21 | 46
1.30
42 | 16
0.26
8 | | 0.1 | | 214
181 | 3 | | 17N/17W-19P01 M
9-11-68 5050
1110 5050 | | 7.9 | 502 | 26
1.30
29 | 12
0.99
22 | 50
2.18
48 | 1.4
0.04
1 | 0.0 | 76
1.25
27 | 80
1.66
36 | 61
1.72
37 | 0.0 | | 0.1 | | 275
268 | 1 | | 17N/17W-30F01 M
9-11-68 5050
1030 5050 | | 7.5 | 623 | 26
1.30
25 | 16
1.32
25 | 58
2. 5 2
49 | 2.0
0.05
1 | 0.0 | 33
0.54
10 | 10
0.21
4 | 140
3.95
74 | 41
0.66
12 | | 0.0 | | 416
309 | 1 | | 18N/17W-07K01 M
9-10-68 5050
1030 5050 | | 7.3 | 175 | 3.8
0.19
13 | 3.0
0.25
17 | 24
1.04
69 | 0.8
0.02
1 | 0.0 | 19
0.31
20 | 15
0.31
20 | 29
0.82
54 | 5.8
0.09
6 | | 0.1 | | 102
91 | | | 18N/17W-19D01 M
9-10-68 5050
1800 5050 | | 7.1 | 274 | 7.2
0.36
15 | 4.9
0.40
17 | 36
1.57
66 | 1.4
0.04
2 | 0.0 | 13
0.21
9 | 4.9
0.10
4 | 54
1.52
66 | 30
0.48
21 | | 0.0 | | 168
145 | | | 19N/17W-20N01 H
9-10-68 5050
1545 5050 | | 7.8 | 200 | 8.4
0.42
23 | 4.1
0.34
18 | 24
1.04
57 | 1.4
0.04
2 | 0.0 | 46
0.75
41 | 3.8
0.08
4 | 35
0.99
54 | 0.0 | | 0.1 | | 101
99 | | | 19N/17W-30G01 M
9-10-68 5050
1340 5050 | | 7.2
5.8 | 340
340 | 8.3
0.41
15 | 6.2
0.51
18 | 42
1.83
66 | 0.8
0.02
1 | 0.0 | 26
0.43
15 |
0.25
9 | 72
2.03
72 | 7.5
0.12
4 | | 0.1 | | 174
162 | | | 19N/17W-30Q01 M
9-10-68 5050
1200 5050 | | 8.2 | 411 | 8.6
0.43
11 | 6.9
0.57
15 | 64
2.78
71 | 5.8
0.15
4 | 0.0 | 140
2.30
59 | 7.4
0.15
4 | 51
1.44
37 | 0.0 | | 0.3 | | 219
213 | AN FRANCISCO BAY REGIO | | 0 | | | | | | | | | | | | | | | | | 03N/06W-01Q01 M
7-19-68 5050
0830 5112 | 66 | | 1360 | | | 223
9.70 | | | | | 146
4.12 | | | | | | | | 03N/06W-03C01 M
7-19-68 5050
0915 5112 | 74 | | 4220 | | | 358
15.57 | | | | | 1080
30.47 | | | 0.3 | | | | | 03N/06W-11B01 M
7-19-68 5050
0842 5112 | 76 | | 1900 | | | 316
13.75 | | | | | 324
9.14 | | | | | | | | 03N/06W-15M01 M
7-29-68 5050
1100 5050 | 64 | | 363 | | | | | | | | 24
0.68 | | | | | | | | 03N/06W-16H80 M
7-29-68 5050
1115 5050 | 70 | | 174 | | | | | | | | 21
0.59 | | | | | | | | 03N/06W-18M01 M
7-29-69 5050
1300 5050 | | 7.9 | 635 | 49
2.44
39 | 31
2.57
41 | 29
1.26
20 | | 0 | 184
3.02 | | 45
1.27 | | | 0.0 | | | 1 | | | | | | | | | | | | | 68 | | | | | | | | State Well Number
Date Lab | Temp. | pH
Lab | EC
Lab | | Mineral | Constituer | ats in | | Milliequis | s per Liter
valents per Liter
Reactance Value | | Milli | grams pe | | 7.1 | |---|-------|-----------|-----------|--------------------|--------------------|--------------------|--------|------------|-------------|---|-------------|-------|-------------------------------|------------|--------------| | Time Sampler | | Field | Field | Со | Mg | No | К | CO 3 | нсо3 | | NО3 | F B | S ₁ O ₂ | TDS
SUM | TH
NCH | | PETALUMA VALLEY 2-01.00 | | | | | | | | | | | | | | | | | 04N/06W-07H01 M
7-19-68 5050
0950 5112 | 70 | 8.6 | 1090 | 62
3.09
26 | 68
5.62
46 | 80
3.48
28 | | 22
0.73 | 525
8.60 | 53
1.50 | | 2.0 | | | 436
0 | | 04N/06W-21Q01 M
7-19-68 5050
0935 5112 | 78 | | 1010 | | | 196
8.53 | | | | 116
3.27 | | 0.9 | | | | | 04N/06W-33R01 M
7-19-68 5050
0905 5112 | 65 | 8.1 | 6120 | 274
13.67
23 | 312
25.69
43 | 468
20.36
34 | | 0 | 527
8.64 | 1810
51.06 | | 0.2 | | | 1970
1538 | | 05N/06W-30D01 M
7-19-68 5050
1015 5112 | | | 891 | | | | | | | 78
2.20 | | 0.5 | | | | | 05N/07W-20L03 M
7-19-68 5050
1440 5112 | 70 | 7.7 | 1350 | 136
6.79
51 | 25
2.06
16 | 100
4.35
33 | | 0 | 234
3.84 | 225
6.35 | | 0.0 | | | 443
251 | | 05N/07W-26E01 M
7-19-68 5050
1315 5112 | 67 | | 761 | | | 60
2.61 | | | | | | | | | | | 05N/07W-34E02 M
7-19-68 5050
1337 5112 | 69 | 8.9 | 908 | 0.20 | 4.6
0.38
5 | 188
8.18
93 | | 22
0.73 | 368
6.03 | 68
1.92 | | 0.2 | | | 29 | | NAPA-SONOMA VALLEY 2-02.
NAPA VALLEY 2-02.01 | 00 | | | | | | | | | | | | | | | | 03N/03W-18G01 M
7-25-68 5050
1515 5050 | | | 1120 | | | 91
3.96 | | | | 158
4.46 | 18
0.29 | 0.1 | | | | | 03N/03W-18G02 M
7-25-68 5050
1530 5050 | | 8.6 | 1310 | 76
3.79
29 | 59
4.82
36 | 108
4.70
35 | | 8
0.27 | 361
5.92 | 147
4.15 | 60
0.97 | 0.0 | | | 431
122 | | 04N/04W-02L01 M
7-25-68 5050
1200 5050 | 63 | | 814 | | | | | | | 111
3.13 | | 0.1 | | | | | 04N/04W-05C01 M
7-24-68 5050
1030 5050 | | 7.8 | 295 | 8.2
0.41
15 | 5.5
0.45
17 | 42
1.83
68 | | 0 | 87
1.42 | 27
0.76 | 23
0.37 | 0.0 | | | 43
0 | | 04N/04W-05D02 M
7-24-68 5050
0930 5050 | | | 774 | | | | | | | 105
2.96 | | | | | | | 04N/04W-12M01 M
7-25-68 5050
1245 5050 | | | 848 | | | | | | | 133
3.75 | | | | | | | 04N/04W-13E01 M
7-25-68 5050
1345 5050 | | 8.1 | 3670 | 312
15.57
42 | 88
7.21
20 | 326
14.18
38 | | 0 | 263
4.31 | 656
18.50 | 255
4.11 | 0.1 | | | 1140
924 | | 04N/04W-14C02 M
7-25-68 5050
1420 5050 | | | 1520 | | | | | | | 340
9.59 | | | | | | | 05N/04W-09Q02 M
7-24-68 5050
1300 5050 | 64 | | 507 | | | | | | | 46
1.30 | | | | | | | 05N/04W-11F03M
7-25-68 5050
1000 5050 | | | 688 | | | | | | | 116
3.27 | | | | | | | 05N/04W-14C01 M
7-25-68 5050
1030 5050 | | 7.9 | 255 | 14
0.70
29 | 0.92
37 | 19
0.83
34 | | 0 | 107
1.75 | 19
0.54 | | 0.0 | | | 81 | | 05N/04W-15E01 M
7-24-68 5050
1330 5050 | 64 | | 404 | | | | | | | 32
0.90 | | 0.1 | | | | | 05N/04W-20R02 M
7-24-68 5050
1100 5050 | | | 1690 | | | | | | | 391
11.03 | | | | | | | 05N/04W-21P02 M
7-24-68 5050
1130 5050 | | 8.4 | 2340 | 34
1.70
7 | 12
1.00
5 | 435
18.92
88 | | | 418
6.85 | 450
12.69 | | 0.4 | | | 135 | | 05N/04W-22M01 M
7-24-68 5050
1345 5050 | | | 635 | | | | | | | 45
1.27 | | | | | | | State Well Number
Date Lab | Temp. | pH
Leb | EC
Lob | | Mineral | Constitu | ients in | | Milliequiv | s per Liter
valents per Liter
deactance Value | | М | lligrams | per Liter | 711 | |--|-------|-----------|-----------|------------------|-------------------|--------------------|----------|------|------------------|---|-------------|--------|----------|------------|-----------| | Time Sampler | | Field | Field | Co | Mg | Na | K | CO 3 | HCO ₃ | | ио3 | F B | SiO | TDS
SUM | TH
NCH | | NAPA VALLEY 2-02.01 | | | | | | | | | | | | | | | | | 05N/04W-29H01 M
7-24-68 5050
1200 5050 | 65 | | 391 | | | | | | | 31
0.87 | | 0. | 0 | | | | 06N/04W-06P01 M
7-24-68 5050
1445 5050 | | | 383 | | | | | | | 18
0.51 | | 0. | 0 | | | | 06N/04W-15Q01 M
7-25-68 5050
0900 5050 | 67 | 8.0 | 267 | 11
0.55
21 | 5.7
0.47
18 | 36
1.57
61 | | 0 | 132
2.16 | 8.2
0.23 | 7.0
0.11 | 0. | 1 | | 51
0 | | 09N/07W-25N01 M
7-24-68 5050
1600 5050 | 85 | 8.1 | 991 | 0.55
7 | 5.0
C.41
5 | 171
7.44
88 | | 0 | 184
3.02 | 188
5.30 | | 8. | 3 | | 48
0 | | SONOMA VALLEY 2-02.02 | | | | | | | | | | | | | | | | | 04N/05W-14D02 M
7-23-68 5050
1405 5112 | 76 | 8.3 | 1010 | 11
0.55
6 | 9.4
0.77
8 | 187
8.13
86 | | 0 | 306
5.02 | 128
3.61 | | 0. | 1 | | 66 | | 04N/05W-28P01 M
7-23-68 5050
1453 5112 | 68 | | 2960 | | | | | | | 634
17.88 | 15
0.24 | 2. | 5 | | | | 05N/05W-18D02 M
7-23-68 5050
1010 5112 | 65 | 8.1 | 568 | 32
1.60
30 | 22
1.82
33 | 46
2.00
37 | | 0 | 186
3.05 | 39
1.10 | | 0. | 2 | | 171
19 | | 05N/05W-20R01 M
7-23-68 5050
1025 5112 | 74 | | 858 | | | 189
8.22 | | | | 49
1.38 | | 4. | 3 | | | | 05N/06W-12F01 M
7-23-68 5050
1000 5112 | 64 | | 438 | | | | | | | 30
0.85 | | 0. | 7 | | | | 05N/06W-25P02 M
7-23-68 5050
1100 5112 | 72 | | 587 | | | | | | | 14
0.39 | | 1. | 3 | | | | 06N/06W-23M02 M
7-23-68 5050
0920 5112 | 71 | 8.2 | 527 | 17
0.85
19 | 7.7
0.63
14 | 70
3.04
67 | | 0 | 145
2.38 | 81
2.28 | • | 1. | 2 | | 74
0 | | 06N/06W-26E01 M
7-23-68 5050
0935 5112 | 72 | | 443 | | | | | | | 56
1.58 | | 1.2 1. | 9 | | | | SUISUN-FAIRFIELD 2-03.00 | 0 | | | | | | | | | | | | | | | | 03N/01E-04B01 M
7-23-68 5050
1415 5050 | | | 1510 | | | | | | | 273
7.70 | | 0. | 6 | | | | 03N/01E-21D01 M
7-23-68 5050
1500 5050 | | | 1820 | | | | | | | 203
5.72 | | 7. | 2 | | | | 03N/01E-22F02 M
7-23-68 5050
1530 5050 | | 8.4 | 1770 | 30
1.50
9 | 24
1.98
12 | 308
13.40
79 | | | 497
8.14 | 234
6.60 | | 4. | 2 | | 174 | | 04N/01W-33A01 M
7-23-68 5050
1230 5050 | | | 3580 | | | | | | | 919
25.92 | | 14. | 0 | | | | 04N/01E-08F01 M
7-23-68 5050
1400 5050 | 70 | 8.2 | 1030 | 45
2.24
22 | 28
2.30
23 | 126
5.48
55 | | 0 | 244
4.00 | 152
4.29 | | 0. | 9 | | 227
27 | | 04N/02W-04D01 M
7-18-68 5050
1800 5050 | 64 | | 1290 | | | | | | | 71
2.00 | | 1. | 2 | | | | 04N/02W-05Q02 M
7-18-68 5050
1830 5050 | | | 950 | | | | | | | 111
3.13 | | 0. | 5 | | | | 04N/02W-09H01 M
7-18-68 5050
1845 5050 | | | 3460 | | | | | | | 1020
28.76 | | 4. | 9 | | | | 04N/02W-18M01 M
7-23-68 5050
1100 5050 | | | 1140 | | | | | | | 121
3.41 | | 0. | 6 | | | | State Well Number
Date Lab | Temp. | pH
Lab | EC
Lab | | Mineral | Canstituer | its in | | Milliegu | ns per Livolents | per Liter
ce Value | | | Milli | grams per | | | |--|-------|-----------|-----------|-------------------|------------------|--------------------|--------|-----------------|------------------|------------------|-----------------------|-------------|---|-------|-----------|------------|---------| | Time Sampler | | Field | Field | Со | Мд | No | К | CO ₃ | HCO ₃ | | | и03 | F | В | SiO2 | TDS
SUM | NC | | SUISUN-FAIRFIELD 2-03.00 |) | | | | | | | | | | | | | | | | | | 04N/03W-13G02 M
7-23-68 5050
1030 5050 | | 7.9 | 470 | 40
2.00
43 | 17
1.38
30 | 29
1.26
27 | | 0 | 177
2.90 | | 15
0.42 | | | 0.3 | | | 16
2 | | 05N/01W-25R01 M
7-23-68 5050
1345 5050 | | 8.0 | 1620 | 103
5.14
34 | 31
2.59
18 | 167
7.26
48 | | 0 | 256
4.20 | | 362
10.21 | | | 0.8 | | | | | 05N/01W-28P01 M
7-23-68 5050
1315 5050 | | 8.4 | 947 | 75
3.74
40 | 27
2.21
24 | 77
3.35
36 | | 5
0.17 | 300
4.92 | | 121
3.41 | | | 0.3 | | | 29 | | 05N/02W-21P03 M
7-23-68 5050
0915 5050 | 64 | | 973 | | | | | | | | 69
1.95 | | | 1.1 | | | | | 05N/02W-34N01 M
7-18-68 5050
1730 5050 | | | 1530 | | | | | | | | 122
3.44 | | | 1.8 | | | | | 05N/02W-34P04 M
7-18-68 5050
1745 5050 | | | 1190 | | | | | | | | 40
1.13 | | | 1.0 | | | | | PITTSBURG PLAIN 2-04.00 | | | | | | | | | | | | | | | | | | | 02N/01E-07R02
M
7-31-68 5050
1130 5050 | | | 8000 | | | | | | | | 2790
78.68 | | | | | | | | CLAYTON VALLEY 2-05.00 | | | | | | | | | | | | | | | | | | | 01N/01W-04A01 M
7-31-68 5050
1300 5050 | | 8.4 | 767 | 68
3.39
42 | 40
3.26
40 | 34
1.48
18 | | 0.13 | 327
5.36 | | 27
0.76 | | | 0.4 | | | 33 | | 02N/01W-30J01 M
8-01-68 5050
1440 5050 | | 8.2 | 1180 | 91
4.54
35 | 66
5.39
42 | 67
2.91
23 | | 0 | 462
7.57 | | 68
1.92 | | | 0.4 | | | 49 | | 02N/01W-30K01 M
8-01-68 5050
1400 5050 | | | 1290 | | | | | | | | 101
2.85 | | | 1.2 | | | | | 02N/01W-31D01 M
8-01-68 5050
1300 5050 | | | 1060 | | | | | | | | 131
3.69 | 44
0.71 | | | | | | | 02N/02W-13P01 M
8-01-68 5050
1515 5050 | | 8.2 | 1010 | 40
2.00
21 | 34
2.82
29 | 113
4.92
50 | | 0 | 252
4.13 | | 143
4.03 | | | 0.2 | | | 24 | | 02N/02W-26B01 M
8-02-68 5050
0900 5050 | | | 945 | | | | | | | | 152
4.29 | | | 1.0 | | | | | 02N/02W-36J01 M
8-01-68 5050
1100 5050 | | | 1200 | | | | | | | | 140
3.95 | 38
0.61 | | | | | | | GNACIO VALLEY 2-06.00 | | | | | | | | | | | | | | | | | | | 01N/01W-07K01 M
7-31-68 5050
1359 5050 | | 8.4 | 2250 | 111
5.54
23 | 69
5.69
24 | 296
12.88
53 | | 6
0.20 | 426
6.98 | | 178
5.02 | | | 0.8 | | | 56 | | 01N/01W-29G01 M
7-31-68 5050
1630 5050 | | 8.3 | 2210 | 128
6.39
28 | 72
5.96
26 | 247
10.74
46 | | 0 | 538
8.82 | | 31
0.87 | | | 0.9 | | | 61 | | Oln/02W-11N01 M
7-31-68 5050
1540 5050 | | 8.6 | 1220 | 80
3.99
32 | 31
2.58
21 | 133
5.78
47 | | 22
0.70 | 450
7.31 | | 131
3.70 | | | 1.2 | | | 32 | | 01N/02W-13P01 M
7-31-68 5050
1400 5050 | | | 1230 | | | | | | | | 111
3.13 | 34
0.55 | | 1.1 | | | | | 02N/02W-36E01 M
8-01-68 5050
1030 5050 | | | 2860 | | | | | | | 380
7.91 | 415
11.70 | 175
2.82 | | 14 | State Well Number Date Lab | Temp. Lab | EC
Lab | | Mineral | Constitu | ents in | | Milligroms
Milliequiv | alents per Liter | | М | lligrams p | er Liter | | |---|-----------|-----------|--------------------|--------------------|--------------------|---------|------|--------------------------|--------------------|-----------------|-----|------------------|------------|---------------------| | Time Sampler | Field | Field | Ca | Mg | No | К | CO 3 | | so ₄ C1 | NO ₃ | F B | SiO ₂ | TDS
SUM | TH | | ANTA CLARA VALLEY 2-09.
AST BAY AREA 2-09.01 | 00 | | | | | | | | | | | | | | | 01S-04W-04A01 M
7-22-68 5050
5100 | 7.4 | 1600 | 110
5.49
34 | 67
5.54
34 | 120
5.22
32 | | 0 | 387
6.34 | 266
7.50 | | 0. | L | | 552
235 | | 02S/03W-28G01 M
7-22-68 5050
5100 | 7.7 | 940 | 67
3.34
36 | 25
2.09
23 | 88
3.83
41 | | 0 | 266
4.36
3.72 | 132
3.72 | | 0.3 | 3 | | 272
54 | | 02S/03W-30D02 M
7-22-68 5050
5100 | 7.7 | 3380 | 255
12.72
38 | 115
9.46
28 | 257
11.18
34 | | 0 | 230
3.77 | 869
24.51 | | 0.: | 3 | | 1110
921 | | 02S/03W-33H03 M
7-25-68 5050
0915 5100 | 7.8 | 661 | 37
1.85
27 | 19
1.53
23 | 77
3.35
50 | | 0 | 323
5.29 | 29
0.82 | | 0. | | | 169
0 | | 02S/03W-34A02 M
7-25-68 5050
5100 | 8.0 | 793 | 67
3.34
41 | 36
2.93
37 | 42
1.83
22 | | 0 | 297
4.87 | 38
1.07 | | 0. | 3 | | 314
70 | | 02S/04W-12R01 M
7-29-68 5050
1500 5100 | 7.7 | 446 | 27
1.35
31 | 14
1.19
28 | 40
1.74
41 | | 0 | 89
1.46 | 48
1.35 | | 0. | ı | | 127
54 | | 02S/04W-25A01 M
7-24-68 5050
5100 | 8.2 | 860 | 47
2.34
27 | 14
1.14
13 | 119
5.18
60 | | 0 | 303
4.97 | 99
2.79 | | 0. | • | | 174
0 | | 03S/02W-07J01 M
7-29-68 5050
1000 5100 | 7.5 | 1110 | 98
4.89
43 | 41
3.34
29 | 73
3.18
28 | | 0 | 390
6.39 | 81
2.28 | | 0. | • | | 412
92 | | 03S/02W-19R04 M
7-24-68 5050
5100 | 8.2 | 1200 | 127
6.34
50 | 38
3.13
25 | 74
3.22
25 | | 0 | 413
6.77 | 145
4.09 | | 0. | 2 | | 474
135 | | 03S/02W-30R14 M
7-29-68 5050
1030 5100 | 7.7 | 1290 | 124
6.19
46 | 43
3.52
26 | 88
3.83
28 | | 0 | 457
7.49 | 135
3.81 | | 0. | | | 48 <i>6</i>
111 | | 03S/02W-32D02 M
7-24-68 5050
5100 | 7.9 | 831 | 37
1.85
23 | 9.4
0.77
9 | 126
5.48
68 | | 0 | 279
4.57 | 91
2.57 | | 0. | 5 | | 131 | | 03S/03W-01G03 M
7-24-68 5050
5100 | 8.2 | 1020 | 47
2.34
23 | 21
1.72
16 | 145
6.31
61 | | 0 | 370
6.06 | 116
3.27 | • | 0. | 5 | | 203 | | 03S/03W-13B02 M
7-24-68 5050
5100 | 8.5 | 1840 | 113
5.64
28 | 68
5.59
28 | 204
8.87
44 | | | 695
11.39 | 142
4.00 | | 1.: | 2 | | 562 | | 03W-03W-24Q02 M
7-29-68 5050
1045 5100 | 8.0 | 2920 | 194
9.68
32 | 117
9.66
32 | 252
10.96
36 | | 0 | 516
8.46 | 562
15.85 | | 0. | 5 | | 968
545 | | 04S/01W-07P02 M
7-11-68 5050
5401 | | 778 | | | | | | | 76
2.14 | | | | | | | 04S/01W-07R01 M
7-11-68 5050
5401 | | 1110 | | | | | | | 111
3.13 | 100
1.61 | | | | | | 04S/01W-07R05 M
7-11-68 5050
5401 | | 814 | | | | | | | 91
2.57 | | | | | | | 04S/01W-17E02 M
7-17-68 5050
5401 | 8.1 | 2210 | 187
9.33
44 | 97
7.99
38 | 90
3.92
18 | | 0 | 275
4.51 | 495
13.96 | | 0 | 3 | | 867
641 | | 04S/01W-18C02 M
7-17-68 5050
5401 | 8.3 | 1130 | 104
5.19
44 | 45
3.70
32 | 63
2.74
24 | | 0 | 364
5.96 | 100
2.82 | | 0.3 | 2 | | 445
147 | | 04S/01W-18G01 M
7-11-68 5050
5401 | | 1700 | | | | | | | 289
8.15 | | | | | | | 04S/01W-18H03 M
7-16-68 5050
5401 | | 1440 | | | | | | | 324
9.14 | | | | | | | 04S/01W-18M07 M
7-16-68 5050
5401 | 8.0 | 2540 | 53
2.64
11 | 198
16.26
70 | 104
4.52
19 | | 0 | 260
4.26 | 606
17.10 | | 0.3 | 3 | | 946
7 3 3 | | State Well Number
Date Lab | Temp. | pH
Lab | EC
Lob | | Mineral | Constitue | nts in | | Milliequ | ms per Liter
vivalents per Liter
Reactance Value | | | Milli | groms per | Liter | ТН | |--|-------|-----------|-----------|--------------------|--------------------|-------------------|--------|-----------------|------------------|--|-----|---|-------|------------------|-------|---------------------------| | Time Sompler | | Field | Field | Со | Mg | No | K | CO ₃ | HCO ₃ | | и03 | F | В | SiO ₂ | SUM | NCH | | EAST BAY AREA 2-09.01 | | | | | | | | | | | | | | | | | | 04S/01W-20D02 M
7-17-68 5050
5401 | | | 812 | | | | | | | 121
3.41 | | | | | | | | 04S/01W-20E01 M
7-16-68 5050
5401 | | | 696 | | | | | | | 91
2.57 | | | | | | | | 04S/01W-20R02 M
7-22-68 5050
0900 5401 | | 8.5 | 649 | 46
2.30
37 | 22
1.82
29 | 49
2.13
34 | | 0.20 | 151
2.47 | 72
2.03 | | | 0.0 | | | 206
72 | | 04S/01W-21F02 M
7-16-68 5050
5401 | | 8.6 | 698 | 50
2.50
38 | 19
1.56
24 | 58
2.52
38 | | 9
0.30 | 184
3.02 | 61
1.72 | | | 0.0 | | | 203
37 | | 04S/01W-21K03 M
7-11-68 5050
5401 | | | 533 | | | | | | | 38
1.07 | | | | | | | | 04S/01W-21P06 M
7-16-68 5050
5401 | | 8.4 | 627 | 44
2.20
36 | 26
2.12
34 | 43
1.87
30 | | 0.13 | 214
3.51 | 39
1.10 | | | 0.6 | | | 216
33 | | 04S/01W-21R02 M
7-16-68 5050
5401 | | 8.5 | 670 | 58
2.89
44 | 22
1.77
27 | 44
1.91
29 | | 6
0.20 | 216
3.54 | 46
1.30 | | | 0.6 | | | 233
45 | | 04S/01W-21R04 M
7-17-68 5050
5401 | | | 516 | | | | | | | 34
0.96 | | | | | | | | 04S/01W-22M02 M
7-00-68 5050
5401 | | 8.4 | 877 | 34
1.70
20 | 16
1.32
15 | 127
5.52
65 | | 3
0.10 | 330
5.51 | 71
2.00 | | | 1.6 | | | 151
0 | | 04S/01W-28B02 M
7-11-68 5050
5401 | | 8.5 | 877 | 72
3.59
39 | 34
2.80
31 | 63
2.74
30 | | 7
0.23 | 323
5.29 | 57
1.61 | | | 0.8 | | | 320
43 | | 04S/01W-28C01 M
7-16-68 5050
5401 | | | 738 | | | | | | | 86
2.42 | | | | | | | | 04S/01W-28C14 M
7-16-68 5050
5401 | | 8.3 | 670 | 58
2.89
46 | 19
1.53
24 | 44
1.91
30 | | 0 | 254
4.16 | 43
1.21 | | | 0.4 | | | 221
13 | | 04S/01W-28D04 M
7-11-68 5050
5401 | | 8.5 | 788 | 73
3.64
46 | 28
2.35
29 | 45
1.96
25 | | 13
0.43 | 243
3.98 | 77
2.17 | | | 0.5 | | | 300
80 | | 04S/01W-28D09 M
7-16-68 5050
5401 | | | 698 | | | | | | | 79
2.23 | | | | | | | | 04S/01W-28F05 M
7-00-68 5050
5401 | | 8.4 | 566 | 35
1.75
32 | 20
1.65
30 | 47
2.04
38 | | 0.03 | | 32
0.90 | | | 0.4 | | | 170
0 | | 04S/01W-28L01 M
7-00-68 5050
5401 | | | 1740 | | | | | | | 346
9.76 | | | | | | | | 04S/01W-28R01 M
7-23-68 5050
5401 | | 8.2 | 1720 | 119
5.94
31 | 92
7.57
39 | 131
5.70
30 | | 0 | 494
8.10 | 152
4.29 | | | 0.6 | | | 676
27 1 | | 04S/01W-29F03 M
7-22-68 5050
1500 5401 | | 8.5 | 828 | 61
3.04
45 | 16
1.30
19 | 57
2.48
36 | | | 217
3.56 | 96
2.71 | | | 0.0 | | | 217
28 | | 04S/01W-29J08 M
7-11-68 5050
5401 | | 7.9 | 4260 | 331
16.52
40 | 190
15.65
38 | 205
8.92
22 | | 0 | 245
4.02 | 1230
34.70 | | | 0.6 | | | 1610
1410 | | 04S/01W-29L12 M
7-00-68 5050
5401 | | 7.9 | 2570 | 237
11.83
52 | 92
7.61
34 | 75
3.26
14 | | 0 | 159
2.61 | 720
20.31 | | | 0.3 | | | 973
843 | | 04S/01W-30E03 M
7-18-68 5050
5401 | | 8.1 | 1690 | 150
7.48
47 | 51
4.19
26 | 99
4.31
27 | | 0 | 170
2.79 | 399
11.26 | | | 0.4 | | | 584
445 | | 04S/01W-30N03 M
7-11-68 5050
5401 | | | 1860
| | | | | | | 4 65
13.11 | | | | | | | | 04S/01W-31A02 M
7-11-68 5050
0700 5401 | | | 2980 | | | | | | | 858
24.20 | | | | | | | | State Well Number
Date Lob | Temp. Lab | EC
Lob | | Mineral | l Constitue | ents in | | Milliego | oms per Liter
uivalents per Lite
t Reactance Value | | Mills | grams per | Liter | | |--|-----------|-----------|--------------------|--------------------|----------------------------|---------|------------|-------------|--|-----------------|-------|-------------------------------|------------|-------------| | Time Sampler | Freld | Field | Ca | Mg | No | К | CO 3 | | | NO ₃ | . F В | S ₁ O ₂ | TDS
SUM | TH
NC | | EAST BAY AREA 2-09.01 | | | | | | | | | | | | | | | | 04S/01W-31B03 M
7-18-68 5050
5401 | 8.1 | 2180 | 195
9.73
48 | 76
6.21
31 | 96
4.18
21 | | 0 | 173
2.84 | 549
15.49 | | 0.4 | | | 798
656 | | 04S/01W-33A01 M
7-11-68 5050
5401 | 8.4 | 1000 | 62
3.09
31 | 44
3.64
36 | 76
3.31
33 | | 5
0.17 | 286
4.69 | 91
2.57 | | 0.6 | | | 337
94 | | 04S/01W-33C01 M
7-22-68 5050
5401 | | 1560 | | | | | | | 222
6.26 | | | | | | | 04S/01W-33E01 M
7-22-68 5050
5401 | | 4300 | | | | | | | 1420
40.04 | | | | | | | 04S/01W-34Q04 M
7-22-68 5050
5401 | 8.3 | 1190 | 114
5.69
44 | 41
3.40
27 | 87
3.78
29 | | 0 | 462
7.57 | 117
3.30 | | 0.2 | | | 455
76 | | 04S/01W-34R02 M
7-16-68 5050
5401 | 8.3 | 732 | 56
2.79
36 | 20
1.67
21 | 77
3.35
43 | | 0 | 374
6.13 | 39
1.10 | | 0.0 | | | 223 | | 04S/01W-35P03 M
7-16-68 5050
5401 | 8.5 | 775 | 42
2.10
25 | 20
1.64
20 | 104
4.52
55 | | 0.20 | 367
6.02 | 44
1.24 | | 0.0 | | | 187 | | 04S/02W-03R01 M
7-22-68 5050
1100 5401 | 8.5 | 623 | 37
1.85
28 | 14
1.15
17 | 83
3.61
55 | | 13
0.43 | 276
4.52 | 20
0.56 | | 0.0 | | | 150 | | 04S/02W-10C01 M
7-22-68 5050
1105 5401 | 8.5 | 662 | 65
3.24
47 | 20
1.62
23 | 48
2.09
30 | | 7
0.23 | 264
4.33 | 38
1.07 | | 0.0 | | | 243
15 | | 04S/02W-10M02 M
7-16-68 5050
5401 | | 646 | | | | | | | 56
1.58 | | | | | | | 04S/02W-10N06 M
7-17-68 5050
5401 | 8.1 | 1810 | 46
2.30
14 | 85
6.99
42 | 167
7.26
44 | | 0 | 152
2.49 | 430
12.13 | | 0.0 | | | 465
340 | | 04S/02W-10Q02 M
7-22-68 5050
5401 | 8.2 | 2840 | 228
11.38
40 | 119
9.80
34 | 167
7.26
26 | | | 430
7.05 | 493
13.91 | * | 0.0 | | | 1060
707 | | 04S/02W-11A02 M
7-16-68 5050
5401 | | 956 | | | | | | | 66
1.86 | | | | | | | 04S/02W-11G01 M
7-22-68 5050
1040 5401 | | 1810 | | | | | | | 188
5.30 | 505
8.13 | | | | | | 04S/02W-11Q10 M
7-22-68 5050
1030 5401 | 8.5 | 759 | 72
3.59
46 | 28
2.28
30 | 42
1.83
24 | | 7
0.23 | | 48
1.35 | | 0.0 | | | 294
73 | | 04S/02W-11R12 M
7-22-68 5050
1430 5401 | | 1640 | | | | | | | 152
4.29 | | | | | | | 04S/02W-12C01 M
7-16-68 5050
5401 | | 630 | | | | | | | 57
1.61 | | | | | | | 04S/02W-12N04 M
7-22-68 5050
1440 5401 | | 924 | | | | | | | 73
2.06 | | | | | | | 04S/02W-12P02 M
7-22-68 5050
1450 5401 | | 874 | | | | | | | 69
1.95 | | | | | | | 04S/02W-13CO2 M
7-16-68 5050
5401 | | 1510 | | | | | | | 224
6.32 | | | | | | | 04S/02W-13E01 M
7-22-68 5050
1140 5401 | | 1180 | | | | | | | 213
6.01 | | | | | | | 04S/02W-14E01 M
7-22-68 5050
1400 5401 | 8.0 | 3070 | | 270
22.19
72 | 134
5 : 83
19 | | 0 | 398
6.52 | 620
17.49 | | 0.0 | | | 1250
924 | | State Well Number
Date Lab | Temp. | pH
Lab | EC
Lab | | Mineral | Constitu | ents in | | Milliego | ms per Liter
uivalents per Liter
Reactance Value | | М | illigroms | per Liter | | |---|-------|-----------|-----------|--------------------|--------------------|-------------------|---------|------------|-------------|--|-----|-----|-----------|------------|--------------| | Time Sampler | | Field | Field | Со | Mg | No | К | CO 3 | | | ио3 | F B | SiO | TDS
SUM | TH
NCH | | EAST BAY AREA 2-09.01 | | | | | | | | | | | | | | | | | 04S/02W-14J01 M
7-22-68 5050
5401 | | 8.2 | 1440 | 147
7.34
53 | 50
4.11
30 | 54
2.35
17 | | 0 | 247
4.05 | 269
7 . 59 | | 0. | 0 | | 573
371 | | 04S/02W-15C01 M
7-22-68 5050
5401 | | 8.5 | 683 | 69
3.44
50 | 20
1.65
24 | 42
1.83
26 | | 13
0.43 | 252
4.13 | 38
1.07 | | 0. | 0 | | 255
27 | | 04S/02W-15L04 M
7-22-68 5050
1120 5401 | | 8.5 | 1180 | 126
6.29
55 | 38
3.10
27 | 47
2.04
18 | | 0.40 | 255
4.18 | 185
5.22 | | 0. | 0 | | 470
241 | | 04S/02W-22P02 M
7-22-68 5050
5401 | | 8.7 | 597 | 30
1.50
25 | 7
0.58
9 | 91
3.96
66 | | 0.47 | 229
3.75 | 29
0.82 | | 0. | 0 | | 104 | | 048/02W-23F02 M
7-22-68 5050
5401 | | 8.2 | 1310 | 128
6.39
50 | 50
4.16
33 | 49
2.13
17 | | 0 | 238
3.90 | 226
6.38 | | 0. | 0 | | 528
333 | | 04S/02W-24D04 M
7-22-68 5050
5401 | | 8.5 | 683 | 72
3.59
52 | 22
1.78
25 | 36
1.57
23 | | 0.37 | 253
4.15 | 39
1.10 | | 0. | 0 | | 269
43 | | 04S/02W-24F06 M
7-23-68 5050
5401 | | 7.8 | 5990 | 516
25.75
46 | 282
23.20
41 | 163
7.09
13 | | 0 | 267
4.38 | 1730
48.80 | | 0. | 0 | | 2450
2230 | | 04S/02W-24L06 M
7-22-68 5050
5401 | | 8.5 | 1030 | 107
5.34
55 | 30
2.49
26 | 42
1.83
19 | | 5
0.17 | 230
3.77 | 160
4.51 | | 0. | 0 | | 392
195 | | 04S/02W-26A01 M
7-23-68 5050
5401 | 6 | 8.1 | 2750 | 263
13.12
53 | 83
6.86
27 | 119
5.18
20 | | 0 | 189
3.10 | 706
19.92 | | 0. | 0 | | 1000
845 | | 04S/02W-27L01 M
7-16-68 5050
5401 | | | 610 | | | | | | | 38
1.07 | | | | | | | 04S/02W-35F01 M
7-22-68 5050
5401 | | | 824 | | | | | | | 93
2.62 | | • | | | | | 05W/01W-04D01 M
7-16-68 5050
5401 | | | 586 | | | | | | | 25
0.71 | | | | | | | 05S/01W-06H01 M
7-22-68 5050
0915 5401 | | | 4200 | | | | | | | 1310
36.94 | | | | | | | 05S/01W-08A03 M
7-22-68 5050
5401 | | 8.7 | 690 | 1.30 | 8
0.66
10 | | | 16
0.53 | 321
5.26 | 16
0.45 | | 0. | 1 | | 98
0 | | 05S/01W-09J01 M
7-22-68 5050
5401 | | | 3890 | | | | | | | 1040
29.33 | | | | | | | 05S/01W-09K01 M
7-22-68 5050
5401 | | 8.0 | | 96
4.79
41 | 2.60 | 95
4.13
36 | | | 361
5.92 | 172
4.85 | | 0. | 3 | | 370
74 | | 05S/01W-09M01 M
7-22-68 5050
5401 | | 7.9 | 2640 | 220
10.98
45 | 79
6.48
26 | 161
7.00
29 | | | 270
4.42 | 727
20.51 | | 0. | 2 | | 874
653 | | 05S/01W-15C01 M
7-22-68 5050
5401 | | | 717 | | | | | | | 50
1.41 | | | | | | | 05S/01W-17A01 M
7-00-68 5050
5401 | | | 527 | | | | | | | 14
0.39 | | | | | | | 05S/02W-01N01 M
7-22-68 5050
0900 5401 | | 8.4 | 465 | 0.32 | | 95
4.13
91 | | 0.07 | | 14
0.39 | | 0. | 1 | | 21 | | SOUTH BAY AREA 2-09.02 | | | | | | | | | | | | | | | | | 05S/01E-31R01 M
10-18-67 5050
1520 2400 | | | 790 | | | | | | | 51
1.44 | | | | | | | 05S/01E-31R01 M
9-23-68 5050
1210 2400 | | | 938 | | | | | | | 71
2.00 | | | | | | | State Well Number
Date Lab | Temp. | pH
Lob | EC
Lob | | Mineral | Constituents in | | Milliequiv | s per Liter
ralents per Liter
leactance Value | Millig | grams per Liter | | |---|-------|-----------|------------|------------------|------------------|-------------------|------------|-------------|---|--------|----------------------|------------| | Time Sampler | | Field | Field | Со | Mg | Na K | CO 3 | | SO ₄ CI NO ₃ | F B | SiO ₂ SUM | TH
NCH | | SOUTH BAY AREA 2-09.02 | | | | | | | | | | | | | | 06S/01E-21B03 M
9-27-68 5050
1110 2400 | | | 808 | | | | | | 21
0.59 | 0.0 | | | | 06S/01E-22P01 M
9-03-68 5050
1020 2400 | | | 439 | | | | | | 65
1.83 | 1.2 | | | | 06S/01E-27C02 M
9-03-68 5050
0930 2400 | | 8.2 | <u>790</u> | 53
2.64
31 | 23
1.92
23 | 90
3.92
46 | 0 | 294
4.82 | 64
1.80 | 1.3 | | 228
0 | | 06S/01E-28A04 M
9-03-68 5050
1510 2400 | | 8.6 | 821 | 24
1.20
15 | 7.3
0.60
7 | 148
6.44
78 | 0.33 | 259
4.24 | 84
2.37 | 0.6 | | 90 | | 06S/01E-30M01 M
9-23-68 5050
1410 2400 | | 8.3 | 640 | 59
2.94
43 | 29
2.37
35 | 34
1.48
22 | 0 | 253
4.15 | 39
1.10 | 0.1 | | 266
59 | | 06W/01W-11B01 M
9-03-68 5050
1320 2400 | | 8.6 | 605 | 69
3.44
50 | 19
1.57
23 | 42
1.83
27 | 12
0.40 | 282
4.62 | 24
0.68 | 0.1 | | 251
0 | | 06S/01W-14E01 M
9-03-68 5050
1400 2400 | | 8.3 | 740 | 70
3.49
46 | 21
1.72
23 | 54
2.35
31 | 0 | 248
4.06 | 82
2.31 | 0.1 | | 261
58 | | 06S/01W-15N03 M
9-27-68 5050
1310 2400 | | | 1050 | | | | | | 99
2.79 | | | | | 06S/01W-15Q01 M
9-25-68 5050
1215 2400 | | | 444 | | | | | | 13
0.37 | | | | | 06S/01W-16A01 M
9-25-68 5050
1350 2400 | 61 | 8.1 | 1570 | 99
4.94
33 | 41
3.37
23 | 152
6.61
44 | 0 | 198
3.24 | 351
9.90 | 0.3 | | 416
254 | | 06S/01W-19C02 M
9-25-68 5050
1420 2400 | | | 561 | | | | | | 28
0.79 | | | | | 06S/01W-26D01 M
10-18-67 5050
1500 2400 | | | 460 | | | | | | 0.31 | | | | | 06S/01W-26D01 M
9-27-68 5050
1020 2400 | | | 455 | | | | | | 52
1.47 | | | | | ' 06S/01W-27N03 M
10-18-67 5050
1400 2400 | | 8.4 | 449 | 42
2.10
48 | 13
1.06
24 | 28
1.22
28 | 0.07 | 212
3.47 | 14
0.39 | 0.2 | |
158
0 | | 06S/01W-27N04 M
9-25-68 5050
0950 2400 | | 8.4 | 477 | 48
2.40
46 | 16
1.36
26 | 33
1.44
28 | 0.13 | 219
3.59 | 14
0.39 | 0.1 | | 188 | | 06S/01W-29C01 M
9-25-68 5050
1110 2400 | 66 | 8.4 | 591 | 64
3.19
49 | 18
1.47
23 | 42
1.83
28 | 6
0.20 | 269
4.41 | 29
0.82 | 0.2 | | 233 | | 06S/01W-31E01 M
9-03-68 5050
1230 2400 | | | 647 | | | | | | 31
0.87 | | | | | 06S/02W-09H01 M
9-25-68 5050
1215 2400 | | 8.5 | 583 | 44
2.20
37 | 11
0.92
15 | 66
2.87
48 | 8
0.27 | 250
4.10 | 45
1.27 | 0.2 | | 156
0 | | 06S/02W-09Q02 M
9-24-68 5050
1240 2400 | 61 | 8.2 | 619 | 51
2.54
40 | 16
1.28
20 | 59
2.57
40 | 0 | 245
4.02 | 36
1.02 | 0.1 | | 191
0 | | 06S/02W-20N01 M
9-22-68 5050
1130 2400 | | | 584 | | | | | | 36
1.02 | | | | | 06S/02W-21A01 M
9-24-68 5050
1115 2400 | | | 194 | | | | | | 0.31 | | | | | 06S/02W-24M01 M
9-25-68 5050
1010 2400 | 64 | 8.2 | 954 | 90
4.49
45 | 42
3.48
35 | 47
2.04
20 | 0 | 297
4.87 | 41
1.16 | 0.1 | | 399
155 | | | | | | | | | | | | | | | | State Well Number
Date Lab | Temp. | pH
Lab | EC
Lab | | Mineral | Constituents in | | Milliegu | ms per Liter
ivalents per Liter
Reactance Value | | Mill | igrams pe | er Liter
TDS | TH | |--|-------|-----------|-----------|------------------|------------------|------------------|------------|------------------|---|-----------------|------|-----------|-----------------|--------------------| | Time Sampler | | Field | Field | Co | Мд | No K | CO 3 | HCO ₃ | SO ₄ C 1 | NO ₃ | F B | S102 | SUM | NCH | | SOUTH BAY AREA 2-09.02 | | | | | | | | | | | | | | | | 06\$/02W-29D02 M
10-18-67 5050
1130 2400 | | | 720 | | | | | | 39
1.10 | 37
0.60 | 0.0 | | | | | 06S/02W-29D02 M
9-27-68 5050
1110 2400 | | | 719 | | | | | | 47
1.33 | 36
0.58 | 0.0 | | | | | 06S/02W-34M01 M
9-27-68 5050
1220 2400 | | | 634 | | | | | | 36
1.02 | | | | | | | 07S/01E-20B80 M
8-30-68 5050
1130 2400 | | | 724 | | | | | | 42
1.18 | 7.6
0.12 | 0.1 | | | | | 07S/01E-25A02 M
8-31-68 5050
1000 2400 | | 8.6 | 991 | 28
1.40
12 | 97
7.95
69 | 52
2.26
19 | 29
0.97 | 472
7.74 | 73
2.06 | | 0.1 | | | 4 6 8
34 | | 07S/02E-07Q01 M
9-27-68 5050
0920 2400 | | | 863 | | | | | | 50
1.41 | | | | | | | 07S/02E-18B01 M
8-30-68 5050
1215 2400 | | | 1060 | | | | | | 80
2.26 | | | | | | | 075/02E-19E01 M
8-30-68 5050
1040 2400 | | 8.4 | 810 | 54
2.69
32 | 38
3.12
37 | 61
2.65
31 | 0.13 | 352
5.77 | 43
1.21 | | 0.0 | | | 291 | | 075/02E-33C04 M
8-30-68 5050
1110 2400 | • | | 868 | | | | | | 42
1.18 | | | | | | | 075/01W-06B01 M
9-26-68 5050
1000 2400 | | | 645 | | | | | | 47
1.33 | | | | | | | 07S/01W-35H01 M
10-05-67 5050
0830 2400 | | 8.5 | 565 | 53
2.64
48 | 26
2.10
38 | 17
0.74
14 | 5
0.17 | 158
2.59 | 54
1.52 | | 0.1 | | | 237
99 | | 07S/01W-35H01 M
9-18-68 5050
0940 2400 | 67 | 8.2 | 502 | 54
2.69
52 | 22
1.83
35 | 16
0.70
13 | 0 | 165
2.70 | 44
1.24 | | 0.0 | | | 226
91 | | 08S/01E-04L04 M
8-30-68 5050
1030 2400 | | 8.4 | 461 | 41
2.04
41 | 28
2.28
45 | 16
0.70
14 | 0.13 | 217
3.56 | 17
0.48 | | 0.1 | | | 216
32 | | 08S/01E-08J01 M
9-03-68 5050
0920 2400 | | | 417 | | | | | | 32
0.90 | | | | | | | 08S/01E-10G01 M
8-30-68 5050
1000 2400 | | 8.4 | 477 | 48
2.40
48 | 18
1.44
29 | 26
1.13
23 | 0.07 | 187
3.06 | 30
0.85 | | 0.1 | | | 192
35 | | 08S/01E-16D01 M
8-30-68 5050
0900 2400 | 60 | 8.3 | 429 | 30
1.50
34 | 21
1.70
39 | 27
1.17
27 | 0 | 160
2.62 | 31
0.87 | | 0.2 | | | 160
29 | | 08S/01E-17B01 M
9-30-68 5050
1100 2400 | | 8.2 | 430 | 26
1.30
31 | 20
1.64
38 | 31
1.35
31 | 0 | 168
2.75 | 30
0.85 | | 0.2 | | | 147
9 | | 08S/01E-27C02 M
9-03-68 5050
0930 2400 | | | 739 | | | | | | 0.62 | 0.34 | 0.3 | | | | | 08S/02E-07F01 M
8-19-68 5050
0920 2400 | 61 | 7.9 | 576 | 40
2.00
34 | 36
2.92
49 | 24
1.04
17 | 0 | 253
4.15 | 17
0.48 | | 0.1 | | | 246
39 | | 08S/02E-16E01 M
8-20-68 5050
1330 2400 | | 8.4 | 545 | 46
2.30
38 | 34
2.81
47 | 21
0.91
15 | 0.13 | 261
4.28 | 16
0.45 | | 0.1 | | | 256
36 | | 08S/02E-17L02 M
8-19-68 5050
0940 2400 | | | 544 | | | | | | 17
0.48 | | | | | | | 08S/02E-34A01 M
8-19-68 5050
1005 2400 | | 8.1 | 618 | 48
2.40
38 | 32
2.61
42 | 28
1.22
20 | 0 | 209
3.42 | 21
0.59 | | 0.1 | | | 251
80 | | | | | | | | | | | | | | | | | | State Well Number
Date Lab | Temp. | pH
Lab | EC
Lob | | Mineral | Constituer | ıts in | | Milliegu | ms per Liter
ivalents per Liter
Reactance Value | | Milli | groms per | Liter | | |---|-------|-----------|-----------|-------------------|-------------------|--------------------|--------|-----------|------------------|---|-----------------|-------|------------------|------------|--------------------| | Time Sampler | remp. | Field | Field | Со | Мд | No | К | CO 3 | HCO ₃ | | NO ₃ | F B | SiO ₂ | TDS
SUM | TH
NCH | | SOUTH BAY AREA 2-09.02 | | | | | | | | | | | | | | | | | 08S/01W-15B01 M
10-17-67 5050
0855 2400 | | 8.6 | 671 | 51
2.54
38 | 35
2.91
43 | 30
1.30
19 | | 0.37 | 194
3.18 | 31
0.87 | | 0.1 | | | 273
96 | | 08S/01W-15B01 M
8-20-68 5050
0900 2400 | | 8.3 | 664 | 57
2.84
43 | 32
2.61
39 | 27
1.17
18 | | 0 | 232
3.80 | 32
0.90 | | 0.0 | | | 273
83 | | 09S/02E-02C01 M
8-19-68 5050
1035 2400 | | 8.1 | 633 | 48
2.40
38 | 32
2.60
41 | 31
1.35
21 | | 0 | 237
3.88 | 26
0.73 | | 0.1 | | | 250
56 | | 09S/03E-22B03 M
8-20-68 5050
1130 2400 | | | 468 | | | | | | | 15
0.42 | | | | | | | 09S/03E-36F03 M
8-20-68 5050
1210 2400 | | 8.3 | 462 | 40
2.00
42 | 20
1.64
35 | 25
1.09
23 | | 0 | 198
3.24 | 19
0.54 | | 0.0 | | | 182
20 | | LIVERMORE VALLEY 2-10.00 |) | | | | | | | | | | | | | | | | 02S/02E-35G02 M
7-26-68 5050
1300 5100 | | 7.9 | 3320 | 74
3.69
11 | 84
6.94
21 | 514
22.36
68 | | 0 | 391
6.41 | 829
23.39 | | 7.1 | | | 532
211 | | 03S/01E-03Q01 M
7-26-68 5050
1510 5100 | 64 | 8.5 | 1270 | 59
2.94
22 | 51
4.17
32 | 138
6.00
46 | | 0.33 | 372
6.10 | 172
4.85 | | 1.8 | | | 356
42 | | 03S/01E-08H01 M
7-26-68 5050
1515 5100 | 64 | 7.8 | 2560 | 117
5.84
22 | 119
9.82
38 | 237
10.31
40 | | 0 | 384
6.29 | 489
13.79 | | 2.0 | | | 784
469 | | 03S/01E-08H03 M
7-26-68 5050
1520 5100 | 62 | 7.8 | 1120 | 75
3.74
32 | 72
5.95
51 | 45
1.96
17 | | 0 | 447
7.33 | 98
2.76 | | 0.7 | | | 485
119 | | 03S/01E-09A01 M
7-26-68 5050
1545 5100 | | 8.4 | 956 | 43
2.14
22 | 28
2.28
23 | 126
5.48
55 | | 3
0.10 | 356
5.78 | 95
2.68 | | 1.0 | | | 221 | | 03S/01E-09K02 M
7-26-68 5050
1535 5100 | 62 | 7.9 | 1240 | 55
2.74
22 | 70
5.77
45 | 96
4.18
33 | | 0 | 445
7.29 | 123
3.47 | • | 2.0 | | | 426
61 | | 03S/01E-09L01 M
7-26-68 5050
1530 5100 | 62 | 7.9 | 1340 | 70
3.49
24 | 71
5.86
42 | 110
4.78
34 | | 0 | 496
8.13 | 124
3.50 | | 1.9 | | | 4 6 8
61 | | 03S/01E-09P01 M
7-26-68 5050
1525 5100 | 64 | 8.2 | 1340 | 96
4.79
34 | 64
5.24
37 | 93
4.04
29 | | 0 | 527
8.64 | 135
3.81 | | 1.8 | | | 502
70 | | 03S/01E-11E01 M
7-26-68 5050
1455 5100 | 64 | 8.0 | 1400 | 76
3.79
37 | 85
6.98
49 | 78
3.39
24 | | 0 | 425
6.96 | 210
5.92 | | 0.8 | | | 539
191 | | 03S/01E-11H01 M
7-29-68 5050
1345 5100 | | 8.3 | 896 | 49
2.44
27 | 53
4.35
47 | 55
2.39
26 | | 0 | 336
5.51 | 91
2.57 | | 0.4 | | | 340
64 | | 03S/01E-13P02 M
7-26-68 5050
1440 5100 | | 8.3 | 730 | 54
2.69
37 | 26
2.11
29 | 57
2.48
34 | | 0 | 305
5.00 | 64
1.80 | | 0.8 | | | 240
0 | | 03S/01E-15L01 M
7-26-68 5050
5100 | | 7.9 | 589 | 54
2.69
46 | 24
1.99
34 | 27
1.17
20 | | 0 | 228
3.74 | 39
1,10 | | 0.1 | | | 234
47 | | 03S/01E-19A05 M
7-26-68 5050
1615 5100 | | 8.1 | 712 | 66
3.29
44 | 34
2.82
38 | 31
1.35
18 | | 0 | 316
5.18 | 36
1.02 | | 0.2 | | | 306
47 | | 03S/02E-04M01 M
7-29-68 5050
5100 | | 7.9 | 780 | 44
2.20
28 | 41
3.41
44 | 49
2.13
28 | | 0 | 314
5.15 | 59
1.66 | | 0.4 | | | 281
24 | | 03S/02E-06P01 M
7-29-68 5050
1300 5100 | | 8.1 | 910 | 50
2.50
28 | 52
4.29
47 | 53
2.30
25 | | 0 | 313
5.13 | 97
2.74 | | 1.0 | | | 340
83 | | 03S/02E-07K01 M
7-29-68 5050
5100 | | 8.3 | 673 | 37
1.85
27 | 33
2.73
40 | | | 0 | 311
5.10 | 41
1.16 | | 0.2 | | | 229
0 | | 03S/02E-08H01 M
7-29-68 5050
5100 | 70 | 8.0 | 766 | 35
1.75
23 | 2.63 | 3.13 | | 0 | 286
4.69 | 69
1.95 | | 0.7 | | | 219
0 | | State Well Number
Date Lab | Temp. | pH
Lab | EC
Lob | | Minero | I Constitu | uents in | | Millieg | oms per Liter
uivalents per Lit
t Reactance Vali | er | Mill | igrams per | | | |---|--------|-----------|------------|------------------|------------------|--------------------|----------|------|-------------|--|-----------------|------|------------------|------------|-----------| | Time
Sampler | | Field | Field | Co | Mg | No | К | CO 3 | | | NO ₃ | F B | SiO ₂ | TDS
SUM | TH
NCH | | LIVERMORE VALLEY 2-10.00 | | | | | | | | | | | | | | | | | 03S/02E-10H01 M
7-26-68 5050
1410 5100 | 67 | 8.3 | 864 | 46
2.30
26 | 36
2.93
34 | 79
3.44
40 | | 0 | 278
4.56 | 93
2.62 | | 1.3 | | | 262
34 | | 03S/02E-29D01 M
7-26-68 5050
1430 5100 | | 8.3 | 783 | 61
3.04
38 | 34
2.83
36 | 47
2.04
26 | | 0 | 296
4.85 | 60
1.69 | | 0.4 | | | 294
51 | | 03S/03E-19C01 M
7-26-68 5050
1400 5100 | | 7.9 | 1720 | 34
1.70
10 | 46
3.83
22 | 270
11.74
68 | | 0 | 532
8.72 | 231
6.52 | | 5.6 | | | 277 | | CENTRAL COASTAL REGION 3- | -00.00 | | | | | | | | | | | | | | | | PAJARO VALLEY 3-02.00 | | | | | | | | | | | | | | | | | 12S/01E-11N01 M
9-26-68 5050
1340 | | 7.8 | 670 | | | 27
1.17 | | 0 | 156
2.56 | 74
2.09 | 37.0
0.59 | | | | | | 12S/01E-23R01 M
9-26-68 5050
1305 | | 8.4 | 625 | | | 49
2.13 | | 0.07 | 298
4.89 | 25
0.70 | 0 | | | | | | 12S/02E-18K02 M
9-26-68 5050
1145 | | 8.4 | 455 | | | 26
1.13 | | 0.03 | 212
3.48 | 13
0.37 | 0.5 | | | | | | 12S/02E-19M01 M
9-26-68 5050
1030 | | 7.9 | 1310 | | | 48
2.09 | | 0 | 297
4.87 | 237
6.68 | 0 | | | | | | 12S/02E-31K01 M
8-26-68 5050
1430 | 69 | 7.7 | 1950 | | | 107
4.65 | | 0 | 201
3.30 | 441
12.44 | 18.0
0.29 | | | | | | 12S/02E-32C01 M
8-26-68 5050
1455 | 69 | 8.4 | 622 | | | 36
1.56 | | 0.13 | 220
3.61 | 44
1.24 | 4.0 | | | | | | 12S/02E-32K01 M
9-26-68 5050
1000 | 68 | 8.1 | 633 | | | 41
1.78 | | 0 | 260
4.26 | 33
0.93 | 2.0 | | | | | | 12S/03E-19M01 M
8-22-68 5050
1435 | 65 | 8.2 | 390 | | | 37
1.61
45 | | 0 | 94
1.54 | | 12.0 | | | | 98
21 | | 12S/03E-30A01 M
8-15-68 5050
1448 | 71 | 7.9 | 552 | | | 50
2.17
44 | | 0 | 105
1.72 | | 37.0
0.59 | | | | 139
53 | | 13S/01E-01A01 M
7-03-68 5050
1500 | | 7.6 | 3760 | | | 260
11.31 | | 0 | 265
4.35 | 955
26.93 | 11.0 | | | | | | 13S/02E-06E02 M
7-08-68 5050
1300 | 65 | 8.4 | 1590 | | | 149
6.48 | | | 215
3.52 | 294
8.29 | 47.0
0.76 | | | | | | 13S/02E-06P01 M
9-26-68 5050
0900 | | 8.4 | 983 | | | 192
8.35 | | | 186
3.05 | 154
4.34 | 0 | | | | | | GILROY-HOLLISTER VALLEY 3 | 03 00 | | | | | | | | | | | | | | | | 10S/03E-01E02 M
9-25-68 5050 | 64 | 7.9 | 540 | | | 17
0.74 | | 0 | 217
3.56 | 19
0.53 | 34.0
0.55 | | | | | | 1545
10S/03E-23J02 M
9-25-68 5050
1525 | | 7.7 | 536 | | | 21 | | 0 | 185
3.03 | 30
0.85 | 50.0 | | | | | | 10S/04E-18G02 M
9-25-68 5050
1400 | | 8.0 | 532 | | | 19
0.83 | | 0 | 214
3.51 | 28
0.79 | 26.0
0.42 | | | | | | 10S/04E-18J01 M
9-25-68 5050
1345 | 69 | 8.3 | <u>476</u> | | | 26
1.13 | | 0 | 222
3.64 | 18
0.51 | 16.0
0.26 | | | | | | 10S/04E-34L05 M
9-25-68 5050
1250 | 66 | 8.1 | 850 | | | 48 | | 0 | 321
5.26 | 62
1.75 | 56.0
0.90 | | | | | | 11S/04E-21B02 M
9-25-68 5050
1150 | | 7.7 | 797 | | | 27
1.17 | | 0 | 324
5.31 | 26
0.73 | 48.0
0.77 | | | | | | State Well Number
Date Lab | Temp. | pH
Lab | EC
Lab | | Mineral (| Constitue | nts in | | Milligro
Milliequ
Percent | ivalents | Liter
per Liter
ace Value | | | Mill | igrams pe | | 771.4 | |---|---------|-----------|-----------|----|-----------|-------------------|--------|------------|---------------------------------|----------|---------------------------------|-----------------|---|------|------------------|------------|----------------| | Time Sompler | | Field | Field | Са | Mg | No | К | CO 3 | нсо3 | | CI | NO ₃ | F | В | SiO ₂ | TDS
SUM | TH
NCH | | ILROY-HOLLISTER VALLEY | 3-03.00 | | | | | | | | | | | | | | | | | | 11S/05E-26Q03 M
9-25-68 5050
1145 | | 7.9 | 535 | | | 24
1.04 | | 0 | 236
3.87 | | 22
0.62 | 3.2 | | | | | | | 12S/05E-36A01 M
9-25-68 5050 | | 8.6 | 1390 | | | 266
11.57 | | 17
0.57 | 476
7.81 | | 150
4.23 | 0.1 | | | | | | | 12S/06E-07M02 M
9-25-68 5050 | | 7.9 | 435 | | | 57
2.48 | | 0 | 223
3.66 | | 22
0.62 | 3.1 | | | | | | | 12S/06E-19E01 M
9-25-68 5050 | | 7.7 | 1580 | | | 250
10.87 | | 0 | 361
5.92 | | 334
9.42 | 0 | | | | | | | 12S/06E-31B01 M
9-25-68 5050
1530 | | 8.4 | 2450 | | | 413
17.96 | | 0.40 | 512
8.40 | | 490
13.82 | 1.2 | | | | | | | 13S/05E-03J01 M
9-25-68 5050 | | 8.4 | 1440 | | | 147
6.39 | | 4
0.13 | 397
6.51 | | 110
3.10 | 12.0 | | | | | | | 13S/05E-11B05 M
9-25-68 5050
1430 | | 8.4 | 363 | | | 21
0.91 | | 0.03 | 102
1.67 | | 23
0.65 | 26.0 | | | | | | | ALINAS VALLEY 3-04.00 | | | | | | | | | | | | | | | | | | | 13S/02E-01K01 M
8-22-68 5050
1315 | 69 | 7.3 | 256 | | | 25
1.09
45 | | 0 | 71
1.16 | | 29
0.82 | 20.0 | | | | | 66
8 | | 13S/02E-07R01 M
7-03-68 5050
1230 | | 7.8 | 976 | | | 168
7.31
78 | | O | 257
4.21 | | 124
3.50 | 0.5 | | | | | 104 | | 13S/02E-13N01 M
8-22-68 5050
1255 | 69 | 7.3 | 237 | | | 28
1.22
55 | | 0 | 65
1.06 | | 37
1.04 | 1.9 | | | | | 49
0 | | 13S/02E-19R01 M
7-08-68 5050
1320 | 67 | 8.0 | 1110 | | | 106
4.61
44 | | 0 | 223
3.66 | | 226
6.37 | 1.2 | | 0 | | | 297
114 | | 13S/02E-20J01 M
7-08-68 5050
1300 | | 7.7 | 1350 | | | 104
4.52
37 | | 0 | 71
1.16 | | | 0.03 | | | | | 393
335 | | 13S/02E-29C04 M
7-08-68 5050
1330 | 71 | 7.9 | 783 | | | 96
4.17
56 | | 0 | 188
3.08 | | 136
3.83 | 1.2 | | | | | 163
9 | | 13S/02E-31D02 M
7-22-68 5050
1040 | | 7.9 | 1230 | | | 134
5.83
51 | | 0 | 212
3.48 | | 264
7.44 | 1.7 | | | | | 281
107 | | 13S/02E-31M02 M
7-08-68 5050
1430 | 69 | 8.2 | 1270 | | | 124
5.39
46 | | 0 | 176
2.89 | | 299
8.43 | 2.0 | | | | | 311
167 | | 13S/02E-31N02 M
7-08-68 5050 | 71 | 8.0 | 1310 | | | 107
4.65
38 | | 0 | 162
2.66 | | 294
8.29 | 2.3 | | | | | 384
251 | | 13S/02E-32A02 M
8-22-68 5050
1340 | 73 | 8.1 | 650 | | | 66
2.87
44 | | 0 | 243
3.98 | | 76
2.14 | 1.6 | | | | | 185
0 | | 13S/02E-32C01 M
7-02-68 5050
1200 | 68 | 8.0 | 536 | | | 53
2.30
43 | | 0 | 203
3.33 | | 56
1.58 | 1.2 | | | | | 153
0 | | 13S/02E-32N01 M
7-09-68 5050
1030 | 71 | 8.3 | 621 | | | 74
3.22
53 | | 0 | 216
3.54 | | 67
1.89 | 2.1
0.03 | | | | | 144
0 | | 13S/02E-33R01 M
7-12-68 5050
1030 | | 8.2 | 1010 | | | 67
2.91
28 | | 0 | 254
4.16 | | 131
3.69 | 27.0
0.43 | | | | | 368
159 | | 13S/03E-04L01 M
8-15-68 5050
1230 | 66 | 7.9 | 284 | | | 32
1.39
51 | | 0 | 83
1.36 | | 42
1.18 | 1.7 | | | | | 68
0 | | 13S/03E-20B02 M
8-15-68 5050
1235 | 70 | 7.8 | 278 | | | 31
1.35
52 | | 0 | 79
1.29 | | 40
1.13 | 5.8
0.09 | | | | | 62
0 | | State Well Number
Date Lab
Time Sampler | Temp. | pH
Lab | EC
Lob | Mineral Constituents in | | Milligrams pe
Milliequivaler
Percent Reac | its per Liter | Milligrams per Liter | | | | | |---|-------|-----------|-----------|-------------------------|------|---|------------------------|----------------------|--------------------------|--|--|--| | | | Field | Field | Co Mg No K | CO 3 | HCO ₃ SO ₄ | | F B | SiO ₂ SUM NCH | | | | | ALINAS VALLEY 3-04.00 | | | | | | | | | | | | | | 13S/03E-29A01 M
8-14-68 5050
1213 | 72 | 7.8 | 533 | 63
2.74
58 | 0 | 55
0.90 | 114 17.0
3.21 0.27 | | 99
54 | | | | | 14S/01E-24Q02 M
8-14-68 5050
0957 | 65 | 7.8 | 1480 | 122
5.31
39 | 0 | 32
0.52 | 224 0.7
6.32 0.01 | | 418
392 | | | | | 14S/01E-25K01 M
8-14-68 5050
0950 | 64 | 7.6 | 634 | 64
2.78
51 | 0 | 34
0.56 | 136 42.0
3.83 0.68 | | 135
107 | | | | | 14S/02E-06Q01 M
7-09-68 5050
1115 | 73 | 7.9 | 606 | 77
3.35
55 | 0 | 208
3.41 | 59 2.6
1.66 0.04 | | 136
0 | | | | | 14S/02E-06R02 M
7-09-68 5050
1100 | | 7.7 | 590 | 68
2.96
53 | 0 | 111
1.82 | 54 87.0
1.52 1.40 | | 129
38 | | | | | 14S/02E-08M02 M
7-09-68 5050
1520 | 71 | 8.0 | 491 | 54
2.35
47 | 0 | 196
3.21 | 48 1.8
1.35 0.03 | | 132
0 | | | | | 14S/02E-11D01 M
7-12-68 5050
1300 | | 8.3 | 688 | 45
1.96
28 | 0 | 242
3.97 | 72 7.3
2.03 0.12 | | 256
57 | | | | | 14S/02E-12Q01 M
7-18-68 5050
1300 | 68 | 8.4 | 553 | 35
1.52
26 | 6 | 229
3.75 | 43 7.2
1.21 0.11 | | 211
13 | | | | | 14S/02E-14N01 M
7-18-68 5050
1400 | | 8.2 | 601 | 54
2.35
39 | 0 | 199
3.26 | 62 3.7
1.75 0.06 | | 183
20 | | | | | 14S/02E-16A01 M
7-12-68 5050
1530 | | 8.2 | 733 | 60
2.61
36 | 0 | 171
2.80 | 78 0.4
2.20 0.01 | | 233
93 | | | | | 14S/02E-18D01 M
7-09-68 5050
1500 | 63 | 8.0 | 1500 | 124
5.39
34 | 0 | 244
4.00 | 274 5.5
7.73 0.09 | | 534
334 | | | | | 14S/02E-23J01 M
7-18-68 5050
1030 | 68 | 8.1 | 1030 | 83
3.61
35 | 0 | 195
3.20 | 127 8.4
3.58 0.13 | | 329
169 | | | | | 14S/02E-24E01 M
7-18-68 5050
1245 | 71 | 8.1 | 700 | 59
2.57
37 | 0. | 210
3.44 | 80 3.5
2.26 0.06 | | 218
46 | | | | | 14S/02E-25B01 M
8-29-68 5050
1330 | 63 | 8.1 | 1550 | 119
5.18
33 | 0 | 296
4.85 | 229 14.0
6.46 0.22 | | 513
270 | | | | | 14S/03E-30E01 M
7-22-68 5050
1300 | | 8.0 | 2190 | 184
8.00
35 | 0 | 411
6.74 | 372 13.0
10.49 0.21 | | 732
395 | | | | | 14S/03E-33G01 M
8-13-68 5050
1015 | 68 | 7.8 | 927 | 63
2.74 | 0 | 227
3.72 | 118 7.5
3.33 0.12 | | | | | | | 15S/01E-22C01 M
8-14-68 5050
0930 | | 7.3 | 910 | 87
3.78 | 0 | 203
3.33 | 128 12.0
3.61 0.19 | | | | | | | 15S/01E-26N02
M
8-14-68 5050
1010 | 75 | 7.3 | 1080 | 122
5.31 | 0 | 142
2.33 | 204 8.5
5.75 0.14 | | | | | | | 15S/02E-02Q01 M
7-19-68 5050
1300 | 64 | 7.3 | 1260 | 76
3.30 | 0 | 362
5.94 | 88 0
2.48 | | | | | | | 158/03E-04K03 M
8-14-68 5050
1500 | 70 | 7.9 | 721 | 55
2.39 | 0 | 184
3.02 | 41 0.7
1.16 0.01 | | | | | | | 15S/03E-07D02 M
7-12-68 5050
1008 | 71 | 7.9 | 486 | 24
1.04 | 0 | 160
2.62 | 13 1.5
0.37 0.02 | | | | | | | 15S/03E-16M01 M
7-12-68 5050
1500 | 64 | 7.9 | 1180 | · 59
2.57 | 0 | 378
6.20 | 72 6.2
2.03 0.10 | | | | | | | State Well Number
Date Lab
Time Sampler | Temp. | pH
Lab | EC
Lab | | Mineral Constituents in | | n | Milligroms per Liter
Milliequivalents per Liter
Percent Reactance Value | | er | Milligrams per Liter | | | | |---|-------|-----------|-----------|----|-------------------------|-------------|------------|---|--------------|-----------------|----------------------|------------------|------------|-----------| | | | Field | Field | Со | Mg N | lo K | CO 3 | HCO ₃ | | NO ₃ | F B | SiO ₂ | TDS
SUM | TH
NCI | | SALINAS VALLEY 3-04.00 | | | | | | | | | | | | | | | | 16S/02E-01L01 M
8-30-68 5050
1330 | | 7.1 | 659 | | 3. | 76
.30 | 0 | 133
2.18 | 111
3.13 | 8.0
0.13 | | | | | | 16S/02E-03J01 M
8-30-68 5050
1215 | | 7.2 | 854 | | 2. | 68
.96 | 0 | 260
4.26 | 104
2.93 | 5.0
0.08 | | | | | | 16S/02E-12G01 M
8-30-68 5050
1430 | | 7.0 | 454 | | | 62
.70 | 0 | 108
1.77 | 65
1.83 | 1.2 | | | | | | 17S/05E-09Q01 M
7-02-68 5050
1235 | 61 | 8.0 | 616 | | 1. | 29
.26 | 0 | 210
3,44 | 24
0.68 | 0.3 | | | | | | 17S/06E-07Q01 M
7-02-68 5050
1400 | 62 | 8.0 | 721 | | | .35 | 0 | 178
2.92 | 55
1.55 | 12.0
0.19 | | | | | | 17S/06E-27K01 M
7-03-68 5050
1100 | 64 | 7.7 | 1160 | | | 100
.35 | 0 | 283
4.64 | 70
1.97 | | | | | | | 17S/06E-35F01 M
7-03-68 5050
1025 | 64 | 8.5 | 1080 | | | 113
.91 | 7
0.23 | 212
3.48 | 73
2.06 | 1.8 | | | | | | 18S/06E-01E01 M
7-08-68 5050
0912 | 65 | 7.9 | 806 | | 3 | 74
.22 | 0 | 250
4.10 | 32
0.90 | | | | | | | 18S/06E-28J01 M
7-08-68 5050
1350 | 64 | 7.9 | 536 | | | 22
.96 | 0 | 175
2.87 | 21
0.59 | | | | | | | 19S/07E-10P01 M
7-09-68 5050
1055 | 62 | 7.6 | 1120 | | 2 | 58
. 52 | 0 | 235
3.85 | 150
4.23 | 25.0
0.40 | | | | | | 19S/07E-13D02 M
7-09-68 5050
1115 | 62 | 8.4 | 1610 | | | 140
.09 | 0 | 348
5.71 | 87
2.45 | 37.0
0.59 | | | | | | 19S/08E-32A01 M
7-09-68 5050
1315 | 65 | 8.5 | 3730 | | | 502
.84 | 10
0.33 | 287
4.71 | 350
9.87 | | | | | | | 19S/08E-33R01 M
7-09-68 5050
1215 | 66 | 8.4 | 3240 | | | 397
.27 | 5
0.17 | 296
4.85 | 307
8.66 | | | | | | | 205/08E-24J02 M
7-16-68 5050
1000 | 72 | 7.3 | 3980 | | | 462
. 10 | 0 | 258
4.23 | 781
22.02 | 4.2
0.07 | 0.80 | 0 | | | | 21S/09E-07J01 M
7-10-68 5050
1105 | 68 | 7.9 | 1940 | | | 136
.91 | 0.20 | | | 47.0
0.76 | | | | | | 21S/09E-24L01 M
7-10-68 5050
1040 | 66 | 8.4 | 2050 | | | 167
.26 | 0.03 | 254
4.16 | 112
3.16 | 12.0 | 0.60 | 0 | | | | 22S/10E-17N01 M
7-10-68 5050
0920 | 65 | 8.4 | 730 | | | 39
.70 | 0.13 | | | 12.0 | | | | | | 22S/10E-34G01 M
9-10-68 5050
1053 | 69 | 8.5 | 961 | | | 80
.48 | 7
0.23 | 272
4.46 | 94
2.65 | 4.2
0.07 | 0.5 | 0 | | | | 23S/08E-08K01 M
8-23-68 5050 | | 8.4 | 302 | | 1 | 23 | 0.03 | 112
1.84 | 20
0.56 | | | | ٠ | | | CARMEL VALLEY 3-07.00 | | | | | | | | | | | | | | | | 16S/01E-25B01 M
8-28-68 5050
0955 | 67 | 7.8 | 488 | | 1 | 37
.61 | 0 | 129
2.11 | 29
0.82 | | | | | | | 16S/01W-13L02 M
8-28-68 5050
0955 | 67 | 8.4 | 915 | | | 69
.00 | 0.10 | 244
4.00 | 100
2.82 | | | | | 303
98 | TABLE E-2 TRACE ELEMENT ANALYSES OF GROUND WATER | State Well Number | Date
Sampled | Constituents in Milligrams per Liter | | | | | | | | | | |----------------------|-----------------|--------------------------------------|---------|--------|------|------|-----------|------|--|--|--| | | | Aluminum | Arsenic | Copper | Iron | Lead | Manganese | Zinc | | | | | | | | | | | | | | | | | | ORTH COASTAL REGI | | 00 | | | | | | | | | | | OINT ARENA 1-20.0 | 0 | | | | | | | | | | | | 12N/16W-18K01M | 9-10-68 | | | | 0.02 | | | | | | | | 12N/17W-12L01M | 9-11-68 | | | | 0.08 | | | | | | | | 12N/17W-13L01M | 9-11-68 | | | | 0.00 | | | | | | | | 13N/16W-31M01M | 9-12-68 | | | | 0.00 | | | | | | | | 13N/17W-24D01M | 9-12-68 | | | | 0.01 | | | | | | | | 13N/17W-25H01M | 9-12-68 | | | | 0.16 | ORT BRAGG TERRACE | .1-21.00 | | | | | | | | | | | | 16N/17W-30M01M | 9-11-68 | | | | 0.00 | | | | | | | | 17N/17W-19P01M | 9-11-68 | | | | 5.9 | | | | | | | | 17N/17W-30F01M | 9-11-68 | | | | 0.01 | | | | | | | | 18N/17W-07K01M | 9-10-68 | | | | 0.00 | | | | | | | | 18N/17W-19D01M | 9-10-68 | | | | 0.01 | | | | | | | | 19N/17W-20N01M | 9-10-68 | | | | 2.3 | | | | | | | | 19N/17W-30G01M | 9-10-68 | | | | 0.00 | | | | | | | | 19N/17W-30Q01M | 9-10-68 | | | | 0.05 | | | | | | | | 131, 1, 11 30 20 211 | 7 20 00 | | | | 0.03 | Appendix F WASTE WATER #### INTRODUCTION Waste waters constitute a portion of our total water resources, and, like streams and lakes, if carefully managed can be put to good use. This appendix contains data on the quality and quantity of waste water discharged at various locations in the Central Coastal Area and on the use of such waters. Data are presented for the period from October 1, 1967, through September 30, 1968. In all tabulations, data are presented according to California Water Quality Control Board regions which are geographic areas defined in Section 13040 of the Water Code. For the Central Coastal Area these are: the southern portion of the North Coastal Region; the San Francisco Bay Region; and the northern portion of the Central Coastal Region. Prior departmental publications which contain similar data for the Central Coastal Area as well as other portions of the State, and additional reports on reclamation of water from wastes in specific areas are: "Reclamation of Water from Sewage or Industrial Waste." December 1952. (Data for 1950-51 and 1951-52.) "Reclamation of Water from Sewage or Industrial Waste." June 1954. (Data for 1952-53.) "Reclamation of Water from Sewage and Industrial Wastes, July 1, 1953-June 30, 1955." Bulletin No. 68. January 1958. "Reclamation of Water from Sewage and Industrial Wastes in California, July 1, 1955-June 30, 1962." Bulletin No. 68-62. October 1963. "Quantity, Quality and Use of Waste Water in Southern California, July 1, 1962-June 30, 1963." Office report. December 1965. "Quantity, Quality and Use of Waste Water in Southern California, July 1, 1962-June 30, 1963." Office report. April 1966. "Quality and Use of Waste Water 1962-1965." Office report. July 1966. (Data for Central Coastal California including San Francisco Bay area.) "Quantity, Quality and Use of Waste Water in Southern California, July 1, 1964-June 30, 1965." Office report. January 1967. "Reclamation of Water from Sewage and Industrial Wastes, Watsonville Area, Santa Cruz and Monterey Counties." Bulletin No. 67. 1955. "Feasibility of Reclamation of Water from Sewage in International Outfall Sewer, Tia Juana Valley, California." Office report. December 1955. "Feasibility of Reclamation of Water from Wastes in the Los Angeles Metropolitan Area." Bulletin No. 80. December 1961. "Reclamation of Water from Wastes in Coastal San Diego County." Bulletin No. 80-2. February 1968. "Reclamation of Water from Wastes: Coachella Valley." Bulletin No. 80-3. December 1966. Department bulletins may be purchased from the Office of Procurement, Documents Section, P. O. Box 20191, Sacramento, California, 95820. They may be found in the Resources Agency Library at 1416 Ninth Street, Sacramento, as well as in many public libraries throughout the State. Office reports are prepared for intradepartmental use, but are often available for reference in department offices. ### Changes in Inventory Program ### North Coastal Region In 1967-68, data were obtained concerning four waste dischargers not previously reported. They are: - 1. <u>City of Cotati</u>. This treatment plant is located in Section 26 of Township 6 North, Range 8 West, Sonoma County. Treatment consists of grinding, primary settling, ponding; sludge digestion, and drying. The average flow during the 1967-68 water year was 0.1 mgd. - 2. <u>City of Rohnert Park</u>. This treatment plant is located in Section 22 of Township 6 North, Range 8 West, Sonoma County. Treatment consists of grinding, primary settling, ponding; sludge digestion, and drying. The average flow during the 1967-68 water year was 0.5 mgd. - 3. <u>City of Santa Rosa (Laguna Plant)</u>. This treatment plant is located in Section 17 of Township 6 North, Range 8 West, Sonoma County. Treatment consists of grinding, aerated grit removal, primary settling, aeration, secondary settling, chlorination, and aerated sludge digestion. The average flow during the 1967-68 water year was 0.2 mgd. - 4. City of Santa Rosa (Oakmont Water Reclamation Plant). This treatment plant is located in Section 15 of Township 7 North, Range 7 West, Sonoma County. Treatment consists of grinding, aeration, settling, chlorination, sand filtration, ponding; sludge digestion, and drying. The average flow during the 1967-68 water year was 0.04 mgd. #### San Francisco Bay Region In
1967-68, data were obtained concerning seven waste dischargers not previously reported. They are: - 1. Contra Costa Sanitary District No. 3. This treatment plant is located in Section 20 of Township 2 North, Range 4 West, Contra Costa County. Treatment consists of grit removal, grinding, and primary settling; sludge digestion, and drying. The average flow during the 1967-68 water year was 1.0 mgd. - 2. Estero Municipal Improvement District (Foster City). This treatment plant is located in Section 23 of Township 4 South, Range 4 West, San Mateo County. Treatment consists of grinding, primary settling, chlorination, and sludge incineration. The average flow during the 1967-68 water year was 1.2 mgd. ### San Francisco Bay Region (Continued) - 3. Marin County Sanitary District No. 5 (Tiburon). This treatment plant is located in Section 6 of Township 1 South, Range 5 West, Marin County. Treatment consists of prechlorination, grinding, primary settling, postchlorination, sludge digestion, and filtration. The average flow during the 1967-68 water year was 0.7 mgd. - 4. Richardson Bay Sanitary District. This treatment plant is located in Section 36 of Township 1 North, Range 6 West, Marin County. Treatment consists of grinding, prechlorination, primary settling, primary mixing (spiral vortex), step aeration, secondary mixing (spiral vortex), secondary settling, postchlorination; sludge digestion, and incineration. The average flow during the 1967-68 water year was 0.2 mgd. - 5. San Francisco International Airport. This treatment plant is located in Section 34 of Township 3 South, Range 5 West, San Mateo County. Treatment consists of prechlorination, oil flotation, screening, grinding, primary settling; primary and secondary sludge digestion and drying. The average flow during the 1967-68 water year was 0.9 mgd. - 6. Treasure Island (U. S. Navy). This treatment plant is located in Section 6 of Township 1 South, Range 5 West, San Francisco County. A new treatment plant is expected to be completed by July 1969 and will consist of prechlorination, grinding, preaeration, grit removal, primary settling, biofiltration, secondary settling, postchlorination; primary and secondary sludge digestion, and centrifuging. The average flow during the 1967-68 water year was 0.9 mgd. - 7. Yountville Veterans Home. This treatment plant is located in Section 1 of Township 6 North, Range 5 West, Napa County. Treatment consists of prechlorination, grinding, primary settling, primary biofiltration, secondary settling, secondary biofiltration, postchlorination; sludge digestion, and drying. The average flow during the 1967-68 water year was 0.2 mgd. ### Central Coastal Region 1. Morgan Hill. The Morgan Hill treatment plant has been shut down and all sewage is pumped to the City of Gilroy plant for treatment. Currently, the Gilroy plant has not changed its treatment process, but a new and enlarged plant is being designed. #### DEFINITIONS The following terms are defined for use in this appendix: Sewage. Any and all waste substances, liquid or solid, associated with human habitation, or which contain or may be contaminated with human or animal excreta or excrement, offal, or any feculent matter. (Section 13005 of the Water Code.) Other Waste. Any and all liquid or solid waste substances (not sewage) from any producing, manufacturing, or processing operation of whatever nature. (Section 13005 of the Water Code.) <u>Waste Water</u>. Water containing sewage, other waste, or any combination thereof. <u>Sewerage System</u>. A system for collecting, transporting, pumping, treating, and disposing of sewage and other wastes. Reclaimed Waste Waters. Waters containing sewage or other waste which have been treated or otherwise purified to enable direct beneficial reuse or to allow reuse that would not otherwise occur. (Section 13005.1 of the Water Code.) Primary Sewage Treatment. Treatment in a sewage treatment plant, which removes by sedimentation and flotation, a large portion of suspended matter, but little or no colloidal and dissolved matter. May be the first step in a major sewerage system or the total process in smaller sewerage systems. <u>Secondary Sewage Treatment</u>. Treatment of sewage by biological methods which follows primary treatment and which accomplishes further stabilization of organic matter. TABLE F-1 ### SUMMARY # QUANTITY OF WASTE WATER DISCHARGED AND REUSED CENTRAL COASTAL AREA WATER YEAR 1968 | : | | Volume in Ac | re-Feet | | |----------------------------------|--------|----------------------------|--------------------------|-------------------| | Water Quality : Control Region : | D 1 | Place of Di
Waste Water | sposal for
not Reused | :
:
: Total | | : | Reused | Land or
Watercourse | : Discharged : : | | | | | | | | | North Coastal Region (No. 1) | 730 | 12,800 | 0 | 12,800 | | Number of Dischargers | 5 | 9 | | 10 | | | | | | | | San Francisco Bay Region (No. 2) | 4,040 | 18,700 | 579,600 | 598,300 | | Number of Dischargers | 6 | 6 | - 57 | 65 | | | | | | | | Central Coastal Region (No. 3) | 650 | 20,000 | 23,900 | 43,900 | | Number of Dischargers | 2 | 22 | 9 | 31 | | | | | | | | TOTAL | 5,420 | 51,500 | 603,500 | 655,000 | | DISCHARGERS | 13 | 37 | 66 | 106 | | | | | | | TABLE F-2 # QUANTITY OF WASTE WATER DISCHARGED AND REUSED CENTRAL COASTAL AREA WATER YEAR 1968 | Discharger | : Average : Discharge : Rate : (Mgd) : | Volume
Discharged
(AF) | Portion
Reused
(AF) | Type of Reuse | Place of Disposal
For Waste Water
Not Reused | |---------------------------|--|------------------------------|---------------------------|----------------|--| | North | Coastal Water | Quality Contro | ol Board I | Region (No. 1) | | | City of Cloverdale | 0.3 | 340 | 0 | | Russian River | | City of Cotati | 0.1 | 110 | 0 | | Laguna de Santa Rosa | | City of Healdsburg | 0.5* | 560 | 24 | Irrigation | Dry Creek | | lendocino State Hospital | 0.4 | 450 | 450 | Irrigation | | | ity of Rohnert Park | 0.5 | 560 | 0 | | Laguna de Santa Rosa | | ity of Santa Rosa | | | | | | | Laguna Plant | 0.2 | 230 | 0 | | Laguna de Santa Rosa | | Oakmont Plant | <0.1 | 40 | 5 | Irrigation | Land | | West College Avenue Plant | 6.6 | 7,400 | 0 | | Santa Rosa Creek | | ity of Sebastopol ° | 0.4* | 450 | 240 | Irrigation | Laguna de Santa Rosa | | ity of Ukiah | 2.4 | 2,690 | 8 | Irrigation | Russian River | | TOTAL IN REGION 1 | 11.5 | 12,830 | 727 | | | | | | | | | | | | | | | | | | | San Francisco Bay | Water Quality | Control Board | Region (No. 2) | | |---|-------------------|---------------|---------------|----------------|-------------------| | City of Benicia | 0.6 | 670 | 0 | | Carquinez Strait | | City of Burlingame | 3.4 | 3,810 | 0 | | San Francisco Bay | | C and H Sugar Refiner | cy 44.4 | 49,700 | 0 | | Carquinez Strait | | Central Contra Costa
Sanitary District | 18.8 | 21,100 | 0 | | Suisun Bay | | Contra Costa Sanitary
District No. 3 | 1.0 | 1,120 | 0 | | San Pablo Bay | | Contra Costa Sanitary
District No. 7A | 0.8 | 900 | 0 | | Suisun Bay | | City of Concord | 4.0 | 4,480 | 0 | | Walnut Creek | | Crockett-Valona
Sanitary District | 0.3 | 340 | 0 | | Carquinez Strait | | East Bay Municipal
Utility District | 81.4 | 91,200 | 440 | Cooling | San Francisco Bay | | Estero Municipal
Improvement Distric | 1.2 | 1,340 | 0 | | San Francisco Bay | | Fairfield-Suisun Sewe
District | 3.5 | 3,920 | 0 | | Suisun Slough | | City of Hayward | 11.6 | 13,000 | 0 | | San Francisco Bay | | Las Gallinas Valley
Sanitary District | 2.4 | 2,690 | 0 | | Miller Creek | | City of Livermore | 2.7 | 3,020 | 530 | Irrigation | Land | | City of Los Altos | 1.5 | 1,680
131 | 0 | | San Francisco Bay | | the Parks and I | | | | | | ^{*} Estimated ### TABLE F-2 (Continued) # QUANTITY OF WASTE WATER DISCHARGED AND REUSED CENTRAL COASTAL AREA WATER YEAR 1968 | Discharger | : Average
: Discharge
: Rate
: (Mgd) | Volume Discharged (AF) | Portion
Reused
(AF) | Type of Reuse | Place of Disposal
For Waste Water
Not Reused | |------------|---|------------------------|---------------------------|---------------|--| |------------|---|------------------------|---------------------------|---------------|--| ### San Francisco Bay Water Quality Control Board Region (No. 2) (Continued) | San Francisco Say | 70002 40 | director bo | dia degre | 11 (110. 2) (00110 | | |--|--------------|------------------|-----------|--------------------|---------------------------------| | Marin County Sanitary District | | | | | | | District No. 1 | 5.0 | 5,600 | 0 | | San Francisco Bay | | District No. 5 (Main) District No. 6 (Ignacio) | 0.7 | 780
780 | 0 | | Raccoon Strait San Pablo Bay | | District No. 6 (Novato) | 2.1 | 2,350 | 0 | | Novato Creek | | | | | | | | | City of Martinez | 1.3 | 1,460 | 0 | | Carquinez Strait | | Menlo Park Sanitary District | 4.7 | 5,260 | 0 | | San Francisco Bay | | City of Mill Valley | 1.6 | 1,790 | 0 | | Richardson Bay | | oity of infi variey | 1.0 | 1,750 | O | | Richardson Day | | City of Milbrae | 1.9 | 2,130 | 0 | | San Francisco Bay | | Milpitas Sanitary District | 2.3 | 2,580 | 0 | | Coyote Creek | | | | · | | | | | City of Mountain View | 5.9 | 6,610 | 0 | | San Francisco Bay | | Mountain View Sanitary District | 0.6 | 670 | 0 | | Carquinez Strait | | Non- Conitation District | 5 C | 6 270 | 0 | | Name Diagram | | Napa Sanitation District | 5,6 | 6,270 | 0 | | Napa River | | North San Mateo County | | | | | | | Sanitation District | 3.6 | 4,030 | 0 | | Pacific Ocean | | Oro Loma Sanitary District | 13.2 | 14,800 | 0 | | San Francisco
Bay | | City of Pacifica | | | | • | | | | 1 5 | 1 600 | ^ | | D161- O | | Linda-Mar Plant
Sharp Park Plant | 1.5
0.9 | 1,680
1,010 | 0 | | Pacific Ocean Pacific Ocean | | | | | | | | | City of Palo Alto | 11.9 | 13,300 | 40 | Fire Control | San Francisco Bay | | City of Petaluma | 2.1 | 2,350 | 0 | | Petaluma River | | City of Pinole | 0.8 | 900 | 0 | | Can Dahla Pau | | city of finote | 0.0 | 300 | 0 | | San Pablo Bay | | City of Pleasanton | 0.9 | 1,010 | 1,010 | Irrigation | | | City of Redwood City | 7.1 | 7,950 | 0 | | San Francisco Bay | | | | | | | | | Richardson Bay Sanitary District | 0.2 | 220 | 0 | | Raccoon Strait | | City of Richmond | 8.7 | 9,740 | 0 | | San Francisco Bay | | Rodeo Sanitary District | 0.6 | 670 | 0 | | San Pablo Bay | | Rodeo Samilary District | 0.0 | 070 | 0 | | Sall rabio bay | | Cities of San Carlos-Belmont | 4.5 | 5,040 | 0 | | San Francisco Bay | | San Francisco International | | | | | | | Airport | 0.9 | 1,010 | 0 | | San Francisco Bay | | City and County of San Francisco | | | | | | | McQueen Plant | 0.8 | 900 | 900 | Landscape | | | | 3.0 | | 700 | Irrigation | | | North Point Plant | 60.7 | 68,000 | 0 | | San Francisco Bay | | Richmond-Sunset Plant
Southeast Plant | 20.6
18.8 | 23,100
21,100 | 0 | | Pacific Ocean San Francisco Bay | | | | | 0 | | | | City of San Jose | 75.5 | 84,600 | 0 | | San Francisco Bay | | City of San Leandro | | | | | | | Domestic Plant | 3.9 | 4,370 | 0 | | San Francisco Bay | | Industrial Plant | 3.0 | 3,360 | 0 | | San Francisco Bay | | | | | | | | ### TABLE F-2 (Continued) # QUANTITY OF WASTE WATER DISCHARGED AND REUSED CENTRAL COASTAL AREA WATER YEAR 1968 | Discharger | Average Discharge Rate (Mgd) | Volume
Discharged
(AF) | Portion
Reused
(AF) | Type of Reuse | Place of Disposal
For Waste Water
Not Reused | |--|------------------------------|------------------------------|---------------------------|------------------|--| | San Francisco Ba | y Water Qua | lity Control I | Board Regio | on (No. 2) (Cont | inued) | | City of San Mateo | 9.4 | 10,500 | 0 | | San Francisco Bay | | San Pablo Sanitary District | 6.7 | 7,500 | 0 | | San Pablo Bay | | San Rafael Sanitation District | 2.4 | 2,690 | 0 | | San Francisco Bay | | Sausalito-Marin City Sanitary
District | 1.7 | 1,900 | 0 | | San Francisco Bay | | Shell Chemical Company, Pittsburg Plant | 14 | 15,700 | 0 | | Suisun Bay | | Sonoma Valley County
Sanitation District | 1.7 | 1,900 | 0 | | Schell Slough | | Cities of South San Francisco-
San Bruno | 8.7 | 9,740 | 0 | | San Francisco Bay | | Stege Sanitary District | 3.7 | 4,140 | 0 | | San Francisco Bay | | City of Sunnyvale | 14.2 | 15,900 | 0 | | San Francisco Bay | | Travis Air Force Base | 1.5 | 1,680 | 1,120 | Irrigation | Union Creek | | Treasure Island, U. S. N. | 1.0 | 1,120 | 0 | | San Francisco Bay | | Union Sanitary District | | | | | | | Newark Plant No. 1 | 3.9 | 4,370 | 0 | | San Francisco Bay | | Irvington Plant No. 2 | 5.1 | 5,710 | 0 | | San Francisco Bay | | Alvarado Plant No. 3 | 1.3 | 1,460 | 0 | | San Francisco Bay | | Vallejo Sanitation and Flood
Control District | 6.9 | 7,730 | 0 | | Carquinez Strait | | Valley Community Services
District | 1.5 | 1,680 | 0 | | Alamo Canal | | Yountville Vetrans Home | 0.2 | 220 | 0 | | Napa River | | TOTAL IN REGION 2 | 534.1 | 598,330 | 4,040 | | | | | | | | | | | 2 | central Coastal wa | iter Quality C | ontrol BC | pard Region (No | <u> </u> | |--|--------------------|----------------|-----------|-----------------|-------------------| | Aptos County Sanitation
District | 0.5 | 560 | 0 | | Monterey Bay | | Atascadero County Sanitation
District | on
<0.1 | 70 | 0 | | Land | | Atascadero State Hospital | 0.3 | 350 | 0 | | Land | | Carmel Sanitary District | 0.9 | 1,010 | 600 | Irrigation | Carmel Bay | | Castroville County Sanitati
District | 0.4 | 450 | 0 | | Tembladero Slough | | Chular County Sanitation
District | <0.1 | 20 | 0 | | Land | | East Cliff County Sanitation District | on
2.2* | 2,460 | 0 | | Monterey Bay | | *Estimated | | 133 | | | | #### TABLE F-2 (Continued) ### QUANTITY OF WASTE WATER DISCHARGED AND REUSED CENTRAL COASTAL AREA WATER YEAR 1968 | Discharger | : Average
: Discharge
: Rate
: (Mgd) | Volume Discharged (AF) | Portion
Reused Ty
(AF) | ype of Reuse : | Place of Disposal
For Waste Water
Not Reused | |------------|---|------------------------|------------------------------|----------------|--| |------------|---|------------------------|------------------------------|----------------|--| | Central Coasta | l Water Qualit | ty Control Boa | ard Region (No. 3) | (Continued) | |-------------------------------------|---------------------------|----------------|--------------------|------------------------------------| | City of Gilroy | | | | | | Domestic
Industrial | 1.4 ¹ /
1.5 | 1,560
1,680 | 0 | Land
Land | | City of Gonzales | 0.3 | 340 | 0 | Land | | City of Greenfield | 0.2 | 220 | 0 | Land | | City of Hollister | | | | | | Domestic Plant
Industrial Plant | 0.6
1.5 | 670
1,680 | 0 | Land
San Benito River | | City of King City | | | | | | Domestic Plant
Airport Plant | 0.4
<0.1 | 450
80 | 0 | Salinas River
San Lorenzo Creek | | City of Monterey | 2.6 | 2,910 | 0 | Monterey Bay | | City of Morgan Hill | o <u>2</u> / | 0 | 0 | Land | | City of Pacific Grove | 1.8 3/ | 2,020 | 0 | Pacific Ocean | | City of Paso Robles | 0.9 | 960 | 0 | Salinas River | | Paso Robles School for Boys | <0.1 | 70 | 0 | Land | | City of Salinas | | | | | | Domestic Plant 1 | 4.4 | 4,930 | 0 | Salinas River | | Domestic Plant 2 (Alisal) | 1.1 | 1,230 | 0 | Salinas River | | Industrial | 4.2 | 4,700 | 0 | Land | | City of San Juan Bautista | 0.1 | 110 | 0 | Land | | San Miguel Sanitary District | ·<0.1 <u>3</u> / | 100 | 0 | Land | | City of Santa Cruz | 6.0 | 6,720 | 0 | Monterey Bay | | Seaside County Sanitation | | | | | | District | 1.3 | 1,460 | 0 | Monterey Bay | | Soledad Prison (California | | | | | | Correctional Training Facility) | 0.5 | 560 | 50 Irrigat | ion Salinas River | | City of Soledad | 0.2 | 220 | 0 | Land | | Troc Pines County Hoter | | | | | | Tres Pinos County Water
District | <0.1 | <10 | 0 | Land | | City of Watsonville | 5.6 | 6,270 | 0 | Monterey Bay | | | | | | | TOTAL IN REGION 3 43,880 650 39.5 $[\]frac{1}{2}$ Includes Morgan Hill $\frac{2}{3}$ Included in Gilroy Domestic $\frac{3}{2}$ Estimated TABLE F-3 ANALYSES OF WASTE WATER PART I | | | | | | | | PAR | TI | | | | | | | | | | | | | | |--|--------------|----------------------|-----------|-----|------------------|------|--------|-------------|---------|----------|----------------|--------|------|---------------|----------------------|-----|-------|---------------------|------|-----------|---------------| | | | Type | Flow | рН | Specific conduc- | | | 1 | Mineral | constitu | ien1s | | | | er liter
per lite | | | | TOS | Hordness | Per- | | Source | Dote
Time | of
Sample | in
mgd | | tance
(micro- | Cal- | Mogne- | Sodi-
um | Potos- | Ammo- | Car-
bonate | Bicar- | Sul- | Chlo-
ride | Ni-
trote | _ | Fluo- | Silica | in | os CoCO: | cent
Sodi- | | | (PST) | | | Lob | mhos
of 25°C) | (Ca) | (Mg) | (No) | | (NH4) | | | | | (NO ₃) | (8) | | (SiO ₂) | | Total N.C | | | SAN FRANCISCO BAY REGION (No. 2) | EAST BAY MUNICIPAL UTILITY DISTRICT 1/ | 1067 | Monthly
Average | 77.9 | 6.7 | | 59.5 | 15.9 | 200 | | | | | 132 | 332 | | | | | | 215 | | | | 1167 | Monthly | 74.8 | 6.8 | | 42.6 | 21.6 | 178 | | | | | | 415 | | | | | | 196 | | | | 1267 | Average | 76.4 | 6.9 | | 28.1 | 14.2 | | | | | | 132 | 174 | | | | | | 130 | | | | 168 | Average | 88.5 | 7.0 | | | | 142 | | | | | | | | | | | | | | | | | Average | | | | 40.3 | ., | | | | | | 106 | 260 | | | | | | | | | | 268 | Monthly
Averaga | 90.2 | 6.9 | | 48.3 | 15.1 | | | | | | 106 | 269 | | | | | | 184 | | | | 368 | Monthly
Avarage | 92.9 | 6.9 | | 47.4 | 11.9 | 210 | | | | | 126 | 256 | | | | | | 168 | | | | 468 | Monthly
Average | 78.2 | 6.9 | | 31.7 | 11.5 | | | | | | 100 | 244 | | | | | | 127 | | | | 568 | Monthly
Average | 76.9 | 6.8 | | 30.3 | 9.9 | | | | | | 86 | 258 | | | | | | 117 | | | | 668 | Monthly
Average | 77.2 | 6.7 | | 27.0 | 16.1 | 150 | | | | | 96 | 292 | | | | | | 135 | | | 1- | 768 | Monthly | 80.4 | 7.0 | | 28.4 | 20.8 | 175 | 21.5 | | | | 146 | 310 | | | | | | 138 | | | | 868 | Average | 83.5 | 7.2 | | 26.6 | 17.5 | | | | | | | 310 | | | | | | 139 | | | | 968 | Average
Monthly | 79.7 | 7.1 | | 33.4 | 17.4 | | | | | | 128 | 355 | | | | | | 151 | | | city of livermore 1/ | | Average | | | 3516 | | · | 010 | 3.5.4 | 20 | | 100 | | | | | 0.5 | | 0.11 | | | | CITY OF LIVERPORE - | 168 | Monthly
Average | 2.7 | 7.9 | 1549 | 52.6 | 45.8 | 212 | 15.6 | 20 | 0 | 138 | | 386 | | 1.0 | 0.5 | | 844 | | 60 | | | 2- *-68 | Monthly
Average | 2.6 | 7.6 | 1626 | 53.3 | 36.7 | 252 | 16.4 | 9.7 | 0 | 83 | | 334 | | 1.6 | 0.24 | | 1135 | | 62 | | | 368 | Monthly
Average | 2.4 | 7.8 | 1660 | 58 | 50 | 290 | 15 | < 0.01 | 0 | 85 | | 450 | | 1.3 | 0.65 | | 1291 | | 63 | | | 468 | Monthly
Average | 2.4 | 7.6 | 2181 | 61 | 41 | 310 | 18.2 | 37 | 0 | 122 | | 445 | | 2.2 | 0.24 | | 1461 | | 60 | | | 568 | Monthly
Average | 2.6 | 7.8 | 1925 | 54.5 | 40.8 | 260 | 13 | 1.3 | 0 | 127 | | 470 | | 2.1 | 0.40 | | 1261 | | 64 | | | 668 | Monthly | 2.6 | 7.6 | 1700 | 55 | 34 | 236 | 9.9 | < 0.01 | 0 | 57 | | 359 | | 2.5 | 0.22 | | 1114 | | 64 | | | 768 | Monthly | 2.8 | 7.8 | 1719
| 68 | 20 | 222 | 12 | 0.60 | 0 | 106 | | 354 | | 1.1 | 0.34 | | 1089 | | 64 | | | 868 | Average | 2.6 | 7.6 | 1717 | 38 | 36 | 203 | 12.0 | 0.81 | 0 | 68 | | 360 | | 1.4 | 0.36 | | 1051 | | 63 | | | 968 | Avarage | 2.7 | 7.8 | 1225 | 46 | 30 | 223 | 12.4 | 0.42 | 0 | 34 | | 348 | | 1.0 | 0.30 | | 1012 | | 65 | | MENLO PARK SANITARY DISTRICT | 10-30-67 | Average | | | | | | | | | | | | | | | | | 840 | 191 | 65 | | | | 18-Hour
Composite | 3,35 | 7.0 | | | | 7.05 | | | | | | 6.46 | | 0.9 | | | | | | | CITY OF MILLBRAE | 10-27-67 | 6-Hour
Composite | | 6.9 | 3160 | | | 19.79 | | | | | | 765 | | 1.0 | | | 1800 | 328 | 75 | | CITY OF MOUNTAIN VIEW | 10-31-67 | 24-Hour
Composite | 5.72 | 7.4 | 1770 | | | 191
8.31 | | | | | | 7.33 | | 0.8 | | | 709 | 212 | 66 | | CITY OF PALO ALTO | 10-27-67 | 24-Hour
Composite | | 7.1 | 1050 | | | 119 | | | | | | 3.30 | | 1.1 | | | 535 | 155 | 62 | 0 | # TABLE F-3 ANALYSES OF WASTE WATER PART 2 | Source ORTH COASTAL REGION (No. 1) | Time
P.S.T. | Type | Flow | Alumi- | | Chromi- | | | | | | | | | | | Nutrients in mg/l | | | | | | | |--|----------------|----------------------|------|--------|----------------------|-----------------------|--------|----------------------|----------------|------|-------|-----------------|--------|--------------|------------------|-------|--------------------|--------|------|--------------------|--------------------|------|--| | TRITH COASTAL REGION (No. 1) | P. S.1. | | | num | Ar-
senic | um | Copper | Lead | Manga-
nese | Zinc | Total | Deter-
gents | Grease | Phe-
nois | BOD | | Nitro | gen Se | | (NH ₃) | Ortho: | | | | ORTH COASTAL REGION (No. 1) | | somple | mgd | (AI) | | (Hex)
(Cr+6) | | (Pb) | (Mn) | (Zn) | - | | oil | | (5 doy) | (NH3) | (NO ₂) | (NO3) | ORG | ORE | (PO ₄) | Teto | CITY OF SANTA ROSA 1/
(West College Avenue Plant) | 1067 | Monthly
Average | 5.60 | | | | | | | | | | | | 15
<u>2</u> / | | | | | | | | | | | 1167 | Monthly
Average | 5.71 | | | | | | | | | | | | 24 | | | | | | | | | | | 1267 | Monthly
Average | 6.38 | | | | | | | | | | | | 53 | | | | | | | | | | | 168 | Monthly | 7.86 | | | | | | | | | 6.9 | | | 46 | | | | | | | | | | | 268 | Average | 9.88 | | | | | | | | | | | | 43 | | | | | | | | | | | 368 | Average
Monthly | 9.07 | | | | | | | | | | | | 32 | | | | | | | | | | | 468 | Average | 6.68 | | | | | | | | | | | | 22 | | | | | | | | | | | 568 | Average | 5.94 | | | | | | | | | 4.8 | | | 30 | | | | | | | | | | | | Average | | | | | | | | | | | | | 43 | | | | | | | | | | | 668 | Monthly
Average | 5.59 | 768 | Monthly
Average | 5.48 | | | | | | | | | | | | 63 | | | | | | | | | | | 868 | Monthly
Average | 5.63 | | | | | | | | | | | | 50 | | | | | | | | | | | 968 | Monthly
Average | 5.57 | | | | | | | | | 4.3 | | | 54 | | | | | | | | | | AN FRANCISCO BAY REGION (No. 2) | EAST BAY MUNICIPAL UTILITY DISTRICT 1/ | 1067 | Monthly
Average | 77.9 | 2.6 | | 0.02 | | | | | 4.8 | | 52 | < 0.1 | 275 | 19.6 | 0.20 | 2.0 | | | | 27 | | | _ | 1167 | Monthly
Average | 74.8 | 2.5 | | < 0.01 | | | | | 4.8 | | 38 | < 0.1 | 211 | 17.3 | | 1.0 | | | | 45 | | | | 1267 | Monthly | 76.4 | 0.9 | | 0.06 | | | | | 3.3 | | 154 | < 0.1 | 201 | 13.0 | 0.28 | 2.0 | | | | 21 | | | | 168 | Average | 88.5 | 1.5 | | 0.21 | | | | | 5.5 | | 55 | < 0.1 | 175 | | | | | | | 28 | | | | 268 | Average
Monthly | 90.2 | 0.4 | | < 0.01 | | | | | 5.6 | | 55 | < 0.1 | 144 | 13.8 | 0.12 | 1.5 | | | | 30 | | | | 368 | Average | 92.9 | 1.0 | | 0.10 | | | | | 2.0 | | 41 | < 0.1 | 167 | 17.3 | 0.16 | 1.4 | | | | 30 | | | | | Average | 78.2 | | | 0.2 | | | | | 3.9 | | 69 | < 0.1 | * | 17.7 | 0.18 | | | | | 37 | | | | 468 | Monthly
Average | | 0.6 | | | | | | | | | | | - | | | | | | | | | | | 568 | Monthly
Average | 76.9 | 1.5 | | < 0.1 | | | | | 5.5 | | 41 | < 0.1 | 152 | 19.6 | 0.16 | 2.0 | | | | 32 | | | | 668 | Monthly
Average | 77.2 | 0.6 | | < 0.1 | | | | | 6.2 | | 53 | < 0.1 | 156 | 20.5 | 0.18 | 1.0 | | | | 30 | | | | 768 | Monthly
Average | 80.4 | 1.0 | | 0.10 | | | | | 6.8 | | 58 | < 0.1 | 199 | 17.5 | 0.12 | | | | | 25 | | | | 868 | Monthly
Average | 83.5 | 1.0 | | 0.01 | | | | | 5.3 | | 32 | 0.0 | 323 | | | | | | | 27 | | | | 968 | Monthly
Averege | 79.7 | 1.2 | | < 0.01 | | | | | 3.9 | | 53 | < 0.1 | 228 | 16.8 | 0.10 | 0.80 | | | | 38 | | | CITY OF LIVERMORE 1/ | 168 | Monthly
Average | 2.7 | | | | | | | | | 0.50 | 0.80 | | 17 | 15.6 | 0.06 | 7.1 | 0.8 | | | 42 | | | | 268 | Monthly | 2.6 | | | | | | | | | 0.41 | 0.74 | | 14.7 | 7.5 | 0.09 | 7.6 | 2.49 | | | 45 | | | | 368 | Average | 2.4 | | | < 0.003 | | < 0.03 | | | | 0.53 | 0.33 | | 10.5 | <0.01 | < 0.01 | 14.7 | 2.9 | | | 45 | | | | 468 | Average
Monthly | 2.4 | | 3/ | <u>3</u> / | | 3/ | | | | 0.44 | 0.34 | | 9.0 | 28.5 | < 0.01 | 8.0 | 3.54 | | | 45 | | | | 568 | Average | 2.6 | | | | | | | | | 0.40 | 0.44 | | 17.7 | 1.0 | < 0.01 | 13.8 | 0.7 | | | 42 | | | | 668 | Average | 2.6 | | | | | | | | | 0.40 | 0.25 | | | | < 0.01 | | 1.2 | | | 79 | | | | | Average | | | | | | | | | | | | | | | | | 1.2 | | | 32 | | | | 768 | Monthly
Average | 2.8 | | | | | | | | | 0.44 | 0.10 | | | | < 0.01 | | | | | | | | | 868 | Monthly
Average | 2.6 | | | | | | | | | 0.45 | | | 0.9 | 0.54 | < 0.01 | 14.0 | | | | 42 | | | | 968 | Monthly
Average | 2.7 | | < 0.01
<u>4</u> / | < 0.005
<u>4</u> / | | < 0.03
<u>4</u> / | | | | 0.36 | 0.60 | | < 0.1 | 0.33 | < 0.01 | 21.0 | 2.10 | | | 49 | | | MENIO PARK SANITARY DISTRICT | 10-30-67 | 18-Hour
Composite | 3.35 | | | | | | | | | 5.0 | | | | | | 0.2 | | 33 | | 26 | | | CITY OF MILLBRAE | 10-27-67 | 6-Hour
Composite | | | | | | | | | | 5.5 | | | | | | 0.3 | | 47 | | 39 | | | CITY OF HOUNTAIN VIEW | 10-31-67 | | 5.72 | | | | | | | | | 5.3 | | | | | | 0.4 | | 57 | | 33 | | | CITY OF PALO ALTO | 10-27-67 | 24-Hour | | | | | | | | | | 3.3 | | | | | | 0.3 | | 28 | | 20 | | | | | Composite | ^{1/} All analyses reported by discharger. 2/ Pond effluent, eamples filtered for removal of elgae. 3/ Six-month preserved composite, October 1967 through March 1968. 4/ Six-month preserved composite, April 1968 through September 1968. TABLE F-3 ANALYSES OF WASTE WATER PART 3 | | | | | | PA | RT 3 | | |--|------------------------|----------------------|-------------------|--------------------------|--|---------------------------|---| | Source | Date
Time
P.S.T. | Type
of
sample | Flaw
in
mgd | Suspended solids in mg/l | Volatile
suspended
solids in
mg/l | Settleable solids in m1/1 | Remarks | | NORTH COASTAL REGION (No. 1) | | | | | | | | | CITY OF SANTA ROSA 1/ | 1067 | Monthly | 5.60 | 68 <u>2</u> / | 52 <u>2</u> / | | | | (West College Avenue Plant) | 1167 | Monthly | 5.71 | 44 | 42 | | | | | | Averege | | | | | | | | 1267 | Monthly
Average | 6.38 | 52 | 50 | | | | | 168 | Monthly
Average | 7.86 | 60 | 51 | | | | | 268 | Monthly | 9.88 | 55 | 44 | | | | | 368 | Average | 9.07 | 53 | 43 | | | | | | Averege | 4 69 | 60 | 56 | | | | | 468 | Monthly
Average | 6.68 | 60 | 20 | | | | | 568 | Monthly
Average | 5.94 | 63 | 54 | | | | | 668 | Monthly
Average | 5.59 | 55 | 48 | | · | | | 768 | Monthly | 5.48 | 36 | 37 | | | | | 868 | Average
Monthly | 5.63 | 46 | 36 | | | | | | Average | | | | | | | | 968 | Monthly
Average | 5.57 | 39 | 39 | | | | SAN FRANCISCO BAY REGION (No. 2) | | | | | | | | | EAST BAY MUNICIPAL UTILITY DISTRICT 1/ | 10- *-67 | Monthly
Average | 77.9 | 150 <u>3</u> / | | 0.2 <u>3</u> / | | | 200200 Z/ | 1167 | Monthly | 74.8 | 142 | | 0.2 | | | 1111 | 1267 | Averege | 76.4 | 181 | | 0.8 | | | | | Average | | | _ | | | | | 168 | Monthly
Average | 88.5 | 179 | | 0.5 | | | | 268 | Monthly
Average | 90.2 | 138 | | 0.2 | | | | 368 | | 92.9 | 158 | | 0.4 | | | | 468 | Monthly | 78.2 | 117 | | 0.2 | | | | 568 | Monthly | 76.9 | 122 | | 0.5 | | | | | Averege | | | | | | | | 668 | Monthly
Average | 77.2 | 119 | | 0.5 | 100000000000000000000000000000000000000 | | | 768 | Monthly
Averege | 80.4 | 119 | | 0.2 | | | | 8~ -68 | Monthly
Averege | 83.5 | 115 | | 0.4 | | | | 968 | Monthly | 79.7 | 99 | | 0.3 | | | | | Averege | | | | | | | CITY OF LIVERMORE 1/ | 168 | Month ly
Averege | 2.7 | 7 | 6 | < 0.1 | | | • | 268 | Monthly | 2.6 | 8.6 | 8.2 | < 0.1 | | | | 368 | Monthly | 2.4 | 10.2 | 4.0 | < 0.1 | | | | 468 | Average | 2.4 | 13 | 8 | < 0.1 | | | | | Average | | | 10.0 | | | | | 568 | Monthly
Average | 2.6 | 12.3 | 10.8 | < 0.1 | | | | 668 | Monthly
Averege | 2.6 | 8 | 7 | < 0.1 | | | | 768 | Monthly
Average | 2.8 | 5.8 | 3.8 | < 0.1 | | | | 868 | Monthly | 2.6 | 9.5 | 7.1 | < 0.1 | | | | 968 | | 2.7 | 7 | 5.3 | < 0.1 | | | | | Average | ^{1/} All
analyses reported by discharger. 2/ Pond efficient, samples filtered for removel of elgae. 3/ Contains digested sludge. ### FIGURE F-1 ## LOCATION OF WASTE DISCHARGERS CENTRAL COASTAL AREA Figure F-1 - Sheet 3 of 6 - Southern Portion of North Coastal Region (No. 1) | Number | <u>Discharger</u> | Number | _ | <u> </u> | Dischar | ger | | |--------|--------------------------|--------|------|--------------|---------|-------|---------------| | 1 | City of Cloverdale | 6 | City | of | Santa | Rosa, | Laguna Plant | | 2 | City of Cotati | 7 | City | of | Santa | Rosa, | Oakmont Plant | | 3. | City of Healdsburg | 8 | City | of | Santa | Rosa, | West College | | 4 | Mendocino State Hospital | | Ave | Avenue Plant | | | | | 5 | City of Rohnert Park | 9 | City | of | Sebast | opo1 | | | | | 10 | City | of | Ukiah | | | ### Figure F-1 - Sheet 4 of 6 - San Francisco Bay Region (No. 2) | Number | Discharger | Numbe | <u>Discharger</u> | |----------|---|-------|--| | 11 | City of Benicia | 33 | City of Millbrae | | 12 | City of Burlingame | 34 | | | 13 | C & H Sugar Refinery | 35 | City of Mountain View | | 14 | Central Contra Costa Sanitary | 36 | Mountain View Sanitary District | | | District | 37 | Napa Sanitation District | | 15 | Contra Costa Sanitary District No. 3 | 38 | North San Mateo County Sanitation District | | 16 | Contra Costa Sanitary District | 39 | Oro Loma Sanitary District | | | No. 7A | 40 | City of Pacifica, Sharp Park | | 17 | City of Concord | | Plant | | 18 | Crockett-Valona Sanitary District | 41 | City of Pacifica, Linda Mar Plant | | 19 | East Bay Municipal Utility | 42 | | | | District | 43 | City of Petaluma | | 20 | Estero Municipal Improvement | 44 | • | | | District | 45 | | | 21 | Fairfield-Suisun Sanitary | 46 | | | 0.0 | District | 47 | | | 22 | City of Hayward | 48 | | | 23 | Las Gallinas Valley Sanitary | 49 | • | | 0.4 | District | | Cities of San Carlos-Belmont | | 24
25 | City of Livermore
City of Los Altos | 51 | San Francisco International Airport | | 26 | Marin County Sanitary District No. 1 | 52 | City and County of San Francisco,
McQueen Plant | | 27 | Marin County Sanitary District No. 5 | 53 | City and County of San Francisco,
North Point Plant | | 28 | Marin County Sanitary District No. 6, Ignacio | 54 | City and County of San Francisco,
Richmond-Sunset Plant | | 29 | Marin County Sanitary District No. 6, Novato | 55 | City and County of San Francisco,
Southeast Plant | | 30 | City of Martinez | 56 | City of San Jose | | 31 | Menlo Park Sanitary District | 57 | City of San Leandro, Domestic | | 32 | City of Mill Valley | | and Industrial | ## Figure F-1 - Sheet 4 of 6 - San Francisco Bay Region (No. 2) (Continued) | umber | Discharger | Number | Discharger | |-------|---------------------------------|--------|------------------------------| | 58 | City of San Mateo | 67 | Travis Air Force Base | | 59 | San Pablo Sanitary District | 68 | Treasure Island | | 60 | San Rafael Sanitation District | 69 | Union Sanitary District, | | 61 | Sausalito-Marin City Sanitary | | Newark Plant No. 1 | | | District | 70 | Union Sanitary District, | | 62 | Shell Chemical Company, | | Irvington Plant No. 2 | | | Pittsburg Plant | 71 | Union Sanitary District, | | 63 | Sonoma Valley County Sanitation | | Alvarado Plant No. 3 | | | District | 72 | Vallejo Sanitation and Flood | | 64 | Cities of South San Francisco | | Control District | | | and San Bruno | 73 | Valley Community Services | | 65 | Stege Sanitary District | | District | | 66 | City of Sunnyvale | 74 | Yountville Vetrans Home | | | | | | ### Figure F-1 - Sheet 5 of 6 - Northern Portion of Central Coastal Region (No. 3) | Number | Discharger | Number | Discharger | |--------|-----------------------------------|--------|-----------------------------------| | 75 | Aptos County Sanitation District | 87 | City of Pacific Grove | | 76 | Carmel Sanitary District | 88 | City of Salinas, Domestic Plant | | 77 | Castroville County Sanitation | | No. 1 | | | District | 89 | City of Salinas, Domestic Plant | | 78 | Chular County Sanitation District | | No. 2 | | 79 | East Cliff County Sanitation | 90 | City of Salinas, Industrial Plant | | | District | 91 | City of San Juan Bautista | | 80 | City of Gilroy, Domestic and | 92 | City of Santa Cruz | | | Industrial | 93 | Seaside County Sanitation | | 81 | City of Gonzales | | District | | 82 | City of Greenfield | 94 | Soledad State Prison | | 83 | City of Hollister, Domestic | | City of Soledad | | 84 | City of Hollister, Industrial | 96 | Tres Pinos County Water District | | 85 | City of Monterey | 97 | City of Watsonville | | 86 | City of Morgan Hill | | | ### Figure F-1 - Sheet 6 of 6 - Middle Portion of Central Coastal Region (No. 3) | Number | <u>c</u> | Discharger | Number | <u>Discharger</u> | |--------|-------------|-------------------|--------|------------------------------| | 98 | Atascadero | County Sanitation | 101 | King City Airport | | | District | | 102 | City of Paso Robles | | 99 | Atascadero | State Hospital | 103 | Paso Robles School for Boys | | 100 | City of Kin | ng City | 104 | San Miguel Sanitary District | ## THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW BOOKS REQUESTED BY ANOTHER BORROWER ARE SUBJECT TO RECALL AFTER ONE WEEK. RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL JUN 5 REC'D RECEIVED JAN 29 REC'D JAN 29 REC'D PHYS SCI LIBRARY NOV 2 LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS Book Slip-Series 458 TC 824 California. Dept. of Water Resources. Bulletin. C2 A2 no. 130:68 V. 1-3 appk. A-F PHYSICAL SCIENCES LIBRARY